Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2018

ELECTRONIC SUPPLEMENTARY INFORMATION

Multi-phase real-time monitoring of oxygen evolution enables *in operando* water oxidation catalysis studies

Fabian L. Huber, Sebastian Amthor, Benjamin Schwarz, Boris Mizaikoff, Carsten Streb* and Sven Rau*

1.	Experimental Procedures	2
2.	Turnover Frequencies (TOFs) and total O ₂ amounts of the studied systems	4
3.	Proposed Mechanism of Cl ⁻ Poisoning	6
4.	Reference Measurements	7
5.	Influence of Stirring	9
6.	Reproduction of Measurements	10
7.	Literature	11

1. Experimental Procedures

Synthesis: [Ru(dpp)(pic)](PF6)2, $[Ru(dceb)_2(bpy)](PF_6)^2$ and $[Mn_4V_4O_{17}(OAc)_3]^{3-3}$ were prepared according to published syntheses.

Photochemical water oxidation catalysis: all studies were carried out in de-aereated solvents under inert atmosphere. All catalytic experiments were tempered by a custom air cooling setup (25 $^{\circ}$ C, Fig S1). A screw cap, hermetically sealed vial (diameter: 12.75 \pm 0.25 mm, length: 99.00 \pm 0.50 mm) equipped with two sensor spots (see "Oxygen detection" below) was used as reaction vessel. The mixtures were not stirred during catalysis, unless mentioned otherwise.

Figure S1. Top: Sealed reaction vessel equipped with oxygen sensor spots, mounted inside in a custom air cooling reactor. Bottom: Catalytic solution, containing $[Ru(dpp)(pic)_2](PF_6)_2$ (2.6 μ M) as catalyst and $[Ru(dceb)_2(bpy)](PF_6)_2$ (0.3 mM) as photosensitizer.

Oxygen detection: Oxygen concentrations were determined using a FireStingO2 optical oxygen meter (Pyroscience, Germany) using oxygen sensitive optical sensor spots (OXSP5, with optical isolation). The spots were glued to the inner glass vessel wall of a screw-capped vial (transparent silicone glue, SPGLUE). The sensor spots are stable between pH 1 – 14, stable in the presence of strong oxidants (the manufacturer suggests cleaning in 3 % aqueous H2O₂), are not affected by the solvents used (as shown by repeated reproducible catalytic measurements) and are autoclavable at 120 °C. For further information, see the manufacturer information: https://www.pyro-science.com/contactless-fiber-optic-oxygen-sensor-spots.html. O₂ concentration was measured in µmol/L (solution) and mbar (gas-phase). Both spots were calibrated by two-point calibration: gas-phase calibration was performed against ambient air and Ar-atmosphere. Liquid-phase calibration was performed using a de-oxygenated reaction solution (aqueous sodium dithionite for Ru-WOC; de-aerated MeCN/H₂O solution for {Mn₄V₄}). Solution TONs were calculated based on the detected concentration; gas-phase TONs were calculated via the ideal gas equation.

Irradiation setup: Irradiation of the samples was performed utilizing two LED-sticks (λ_{max} = 470 nm, power density at the sample ca. 50 mW cm⁻² as determined using a power meter, also see Fig S2). Both sticks were placed on opposite sides of the reaction vessel.

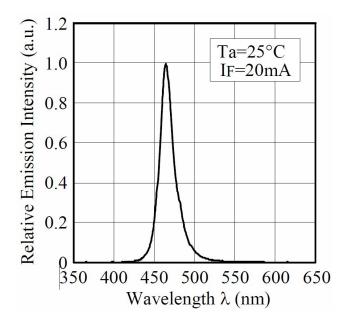


Figure S2. Emission spectrum of the LEDs used as irradiation source.

Ru-WOC catalysis: $[Ru(dpp)(pic)_2](PF_6)_2$ (2.6 µM), photosensitizer (0.3 mM, $[Ru(bpy)2](PF_6)_2$, $[Ru(bpy)_2]CI_2$ or $[Ru(dceb)_2(bpy)](PF_6)_2$) and $Na_2S_2O_8$ (10 mM) were dissolved in a $Na_2S_6F_6/NaHCO_3$ aqueous buffer (pH 6.8, 0.01 M Na_2SiF_6 , 5 mL containing 70 µL MeCN). The solutions were kept in sealed glass GC vial equipped with two sensor "spots".

 $\{Mn_4V_4\}\$ catalysis: $[Mn_4V_4O_{17}(OAc)_3]^{3-}$ $(0.3\mu M)$, the photosensitizer $(1.0\ mM,\ [Ru(bpy)_2](PF_6)_2,\ [Ru(bpy)_2]Cl_2))$ and $Na_2S_2O_8$ (10 mM) are dissolved in MeCN/H₂O (9:1, v:v). The homogenous solutions were irradiated with LED light sources $(\lambda_{max}$ = 470 nm, ca. 50 mW cm⁻²).

2. Turnover Frequencies (*TOFs*) and total O₂ amounts of the studied systems

Turnover frequencies were independently calculated from the *TON*s obtained from the oxygen measurement in the gas and the liquid phase. The total *TOF* is based on the measurements in the gas phase and the solution.

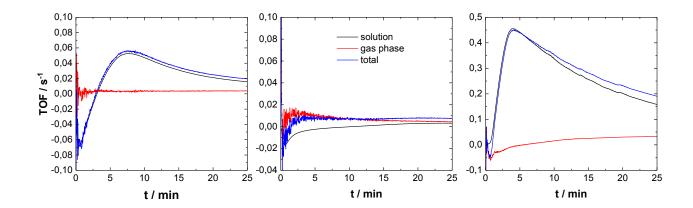


Figure S3. TOF of the light-driven oxygen evolution of the Ru-WOC system utilizing different photosensitizers. Left: $[Ru(bpy)_3](PF_6)_2$. Center: $[Ru(bpy)_3]Cl_2$. Right: $[Ru(dceb)_2(bpy)](PF_6)_2$. Catalyst TONs were calculated based on the oxygen detected in solution and gas phase using eq. 2. Conditions: Ru-WOC = 2.6 μ M; PS = 0.3 mM; Na₂S₂O₈ = 10 mM. Solvent: aqueous Na₂SiF₆/NaHCO₃ buffer, pH 6.8, 0.01 M Na₂SiF₆. Irradiation: LED, λ_{max} = 470 nm, α . 50 mW cm⁻².

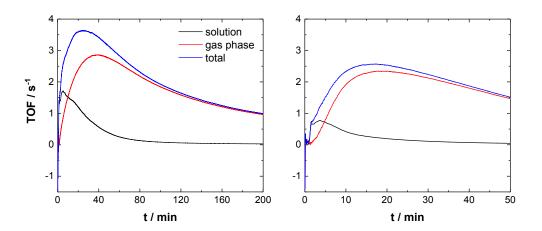


Figure S4. TOF of the light-driven O_2 evolution based on measurements in solution and gas-phase for the $\{Mn_4V_4\}$ system. Left: chloride-free system using the photosensitizer $[Ru(bpy)_3](PF_6)_2$. Right: chloride-containing system using the photosensitizer $[Ru(bpy)_3]CI_2$. Conditions: $\{Mn_4V_4\}$ = 0.3 μ M, PS = 1 mM, $Na_2S_2O_8$ = 10 mM in MeCN / H_2O (9:1) using LED irradiation (λ_{max} = 470 nm, ca. 50 mW cm⁻²).

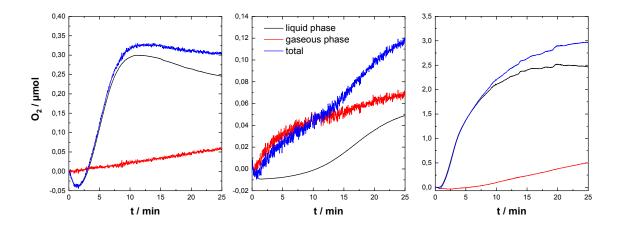


Figure S5. Amount of oxygen produced during light-driven water oxidation of the Ru-WOC system utilizing different photosensitizers. Left: $[Ru(bpy)_3](PF_6)_2$. Center: $[Ru(bpy)_3](PF_6)_2$. Conditions: Ru-WOC = 2.6 μ M; PS = 0.3 mM; Na₂S₂O₈ = 10 mM. Solvent: aqueous Na₂SiF₆/NaHCO₃ buffer, pH 6.8, 0.01 M Na₂SiF₆. Irradiation: LED, λ_{max} = 470 nm, ca. 50 mW cm⁻².

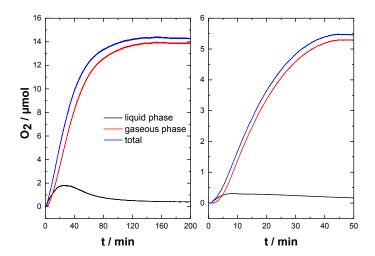


Figure S6. Amount of oxygen produced during light-driven water oxidation based on measurements in solution and gas-phase for the $\{Mn_4V_4\}$ system. Left: chloride-free system using the photosensitizer $[Ru(bpy)_3](PF_6)_2$. Right: chloride-containing system using the photosensitizer $[Ru(bpy)_3]CI_2$. Conditions: $\{Mn_4V_4\} = 0.3 \, \mu\text{M}, \, PS = 1 \, \text{mM}, \, Na_2S_2O_8 = 10 \, \text{mM} \, \text{in MeCN} \, / \, H_2O \, (9:1) \, \text{using LED irradiation} \, (λ_{max} = 470 \, \text{nm}, \, ca. 50 \, \text{mW cm}^{-2}).$

3. Proposed Mechanism of Cl- Poisoning

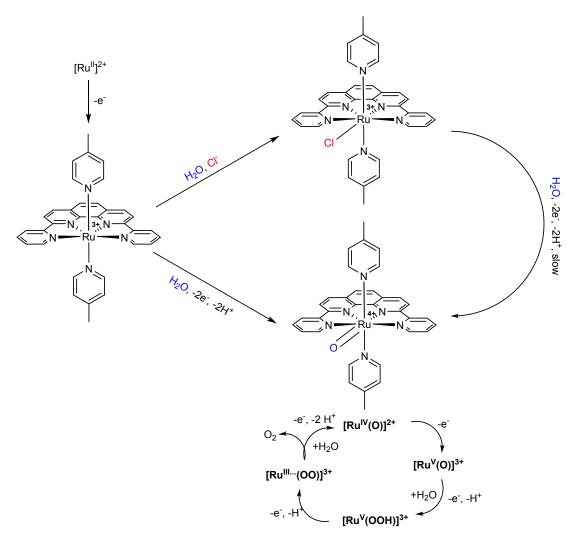
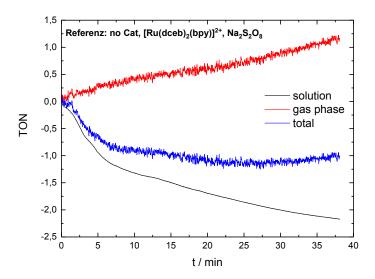
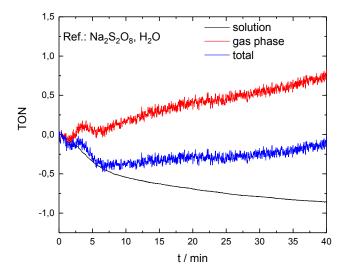
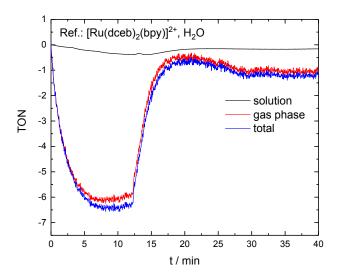
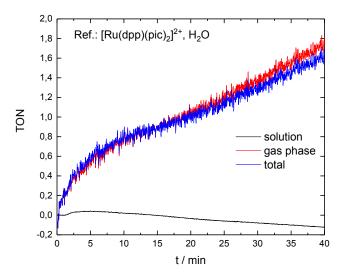




Figure S7. Possible mechanism of poisoning by chloride based on mechanistic studies by Thummel et al..4


4. Reference Measurements


 $\textbf{Figure S8.} \ \ \text{Negligible O}_2\text{-evolution upon irradiation of a catalyst-free mixture containing } \\ [(\text{Ru}(\text{dceb})_2(\text{bpy})](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (10 \ \text{mM}). \\ [(\text{Ru}(\text{dceb})_2(\text{bpy}))](\text{PF}_6)_2 \ (0.3 \ \text{mM}) \ \text{and } \\ \text{Na}_2\text{S}_2\text{O}_8 \ (0.3 \ \text{mM})) \ \text{Na}_2\text{S}_2\text{O}_8 \ (0.3 \ \text{mM}) \ \text{Na}_2\text{S}_2\text{O}_8 \ (0.3 \ \text{mM})) \ \text{Na}_2\text$

 $\textbf{Figure S9}. \ \ \text{Negligible O}_2\text{-evolution upon irradiation of an aqueous Na}_2S_2O_8 \ \ \text{solution (10 mM), containing no catalyst or photosensitizer.}$

 $\textbf{Figure S10.} \ \ \text{Negligible O}_2\text{-evolution upon irradiation of a } \ \ [(\text{Ru}(\text{dceb})_2(\text{bpy})](\text{PF}_6)_2 \ \ \text{solution (0.3 mM) containing no persulfate.}]$

 $\textbf{Figure S11.} \ \ \text{Negligible O}_2\text{-evolution upon irradiation of a } \ [(\text{Ru}(\text{dpp})(\text{pic})_2](\text{PF}_6)_2 \ \ \text{solution (2.5 μM)}, \ \text{with no peroxodisulfate and no photosensitizer}.$

5. Influence of Stirring

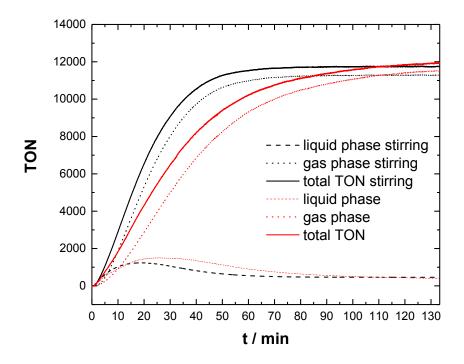


Figure S12. Influence of stirring a catalytic solution of $\{Mn_4V_4\}$ (0.3 $\mu M\}$, $[Ru(bpy)_3](PF_6)_2$ (1 mM) and $Na_2S_2O_8$ (10 mM) in an MeCN/H₂O solution while being irradiated with two blue LED-sticks (λ_{max} = 470 nm, ca. 50 mW cm⁻²).

6. Reproducability

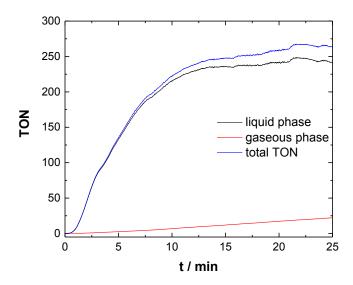


Figure S13. Light-driven oxygen evolution of the Ru-WOC system utilizing [Ru(dceb)₂(bpy)](PF₆)₂ as photosensitizer. Conditions: [Ru(dpp)(pic)₂](PF₆)₂ = 2.6 μM, PS = 0.3 mM, Na₂S₂O₈ = 10 mM. Solvent: aqueous Na₂SiF₆/NaHCO₃ buffer, pH 6.8, 0.01 M Na₂SiF₆. Irradiation: two LED-sticks, $λ_{max}$ = 470 nm, *ca.* 50 mW cm⁻²).

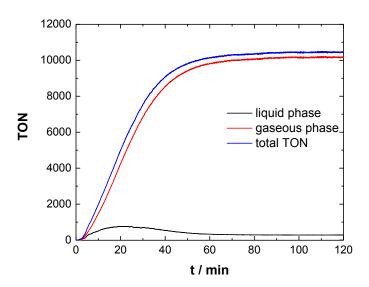


Figure S14. Light-driven O_2 evolution in solution and gas-phase for the $\{Mn_4V_4\}$ system utilizing $[Ru(bpy)_3](PF_6)_2$ as photosensitizer. Conditions: $\{Mn_4V_4\} = 0.3 \mu M$, PS = 1 mM, $Na_2S_2O_8 = 10 \text{ mM}$ in MeCN/H₂O (9:1) using LED irradiation ($\lambda_{max} = 470 \text{ nm}$, ca. 50 mW cm⁻²).

7. Literature

- 1 G. Zhang, R. Zong, H. W. Tseng and R. P. Thummel, *Inorg. Chem.*, 2008, **47**, 990–998.
- T. Kowacs, L. O'Reilly, Q. Pan, A. Huijser, P. Lang, S. Rau, W. R. Browne, M. T. Pryce and J. G. Vos, *Inorg. Chem.*, 2016, **55**, 2685–2690.
- 3 B. Schwarz, J. Forster, M. K. Goetz, D. Yücel, C. Berger, T. Jacob and C. Streb, *Angew. Chem. Int. Ed.*, 2016, **55**, 6329–6333.
- J. T. Muckerman, M. Kowalczyk, Y. M. Badiei, D. E. Polyansky, J. J. Concepcion, R. Zong, R. P. Thummel and E. Fujita, *Inorg. Chem.*, 2014, **53**, 6904–6913.