SUPPORTING INFORMATION

Hydrogen production from formic acid decomposition in the liquid phase using Pd nanoparticles supported on CNFs with different surface properties

Felipe Sanchez,^a Mohammad Hayal Alotaibi,^b Davide Motta,^a Carine Edith Chan-Thaw,^c Andrianelison Rakotomahevitra,^c Tommaso Tabanelli,^d Alberto Roldan,^{a*} Ceri Hammond,^a Qian He,^a Tom Davies,^a Alberto Villa*e and Nikolaos Dimitratos*a

^aCardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK

^bJoint Center of Excellence in Integrated Nano-Systems, King Abdulaziz City for Science and Technology, P.O. Box 6086 Riyadh 11442 Saudi Arabia

^cInstitut pour la Maîtrise de l'Énergie – Université d'Antananarivo BP 566, 101 Antananarivo, Madagascar

^dDipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

^eDipartimento di Chimica, Universitá degli studi di Milano, via Golgi 19, 20133, Milano, Italy

* corresponding and co-corresponding authors

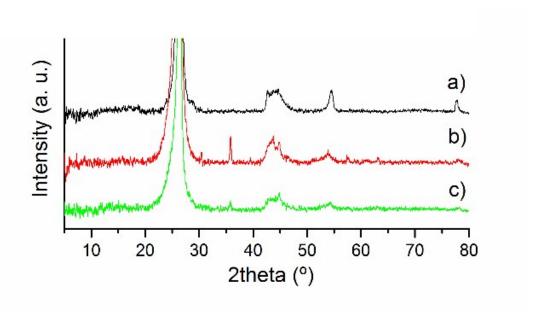
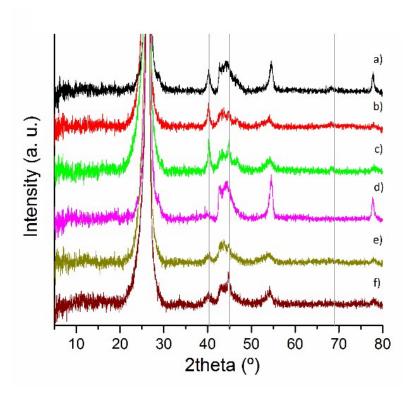
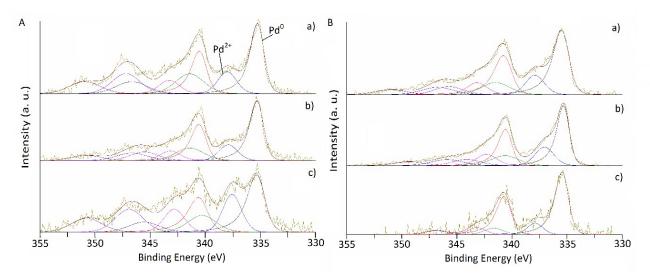
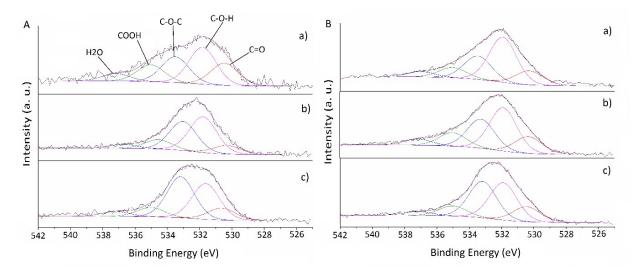
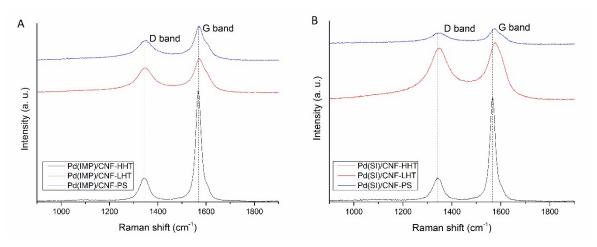
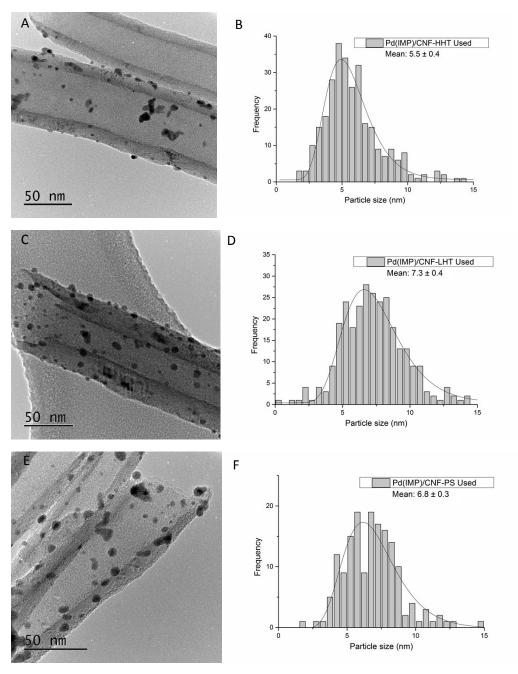





Figure S1. XRD patterns of the supports. (a) CNF-HHT, (b) CNF-LHT, (c) CNF-PS.


Figure S2. XRD patterns of used Pd/CNF (a) $Pd_{IMP}/CNF-HHT$, (b) $Pd_{IMP}/CNF-LHT$, (c) $Pd_{IMP}/CNF-PS$, (d) $Pd_{SI}/CNF-HHT$, (e) $Pd_{SI}/CNF-LHT$, (f) $Pd_{SI}/CNF-PS$.


Figure S3. XPS spectra of used Pd/CNF (A) Catalyst synthesised by impregnation: (a) $Pd_{IMP}/CNF-HHT$, (b) $Pd_{IMP}/CNF-LHT$, (c) $Pd_{IMP}/CNF-PS$. (B) Catalysts synthesised by solimmobilisation: (a) $Pd_{SI}/CNF-HHT$, (b) $Pd_{SI}/CNF-LHT$, (c) $Pd_{SI}/CNF-PS$.


Figure S4. XPS spectra of fresh Pd/CNF in the binding energy region of 281–295 eV corresponding to C1s. (A) Catalyst synthesised by impregnation: (a) $Pd_{IMP}/CNF-HHT$, (b) $Pd_{IMP}/CNF-LHT$, (c) $Pd_{IMP}/CNF-PS$. (B) Catalysts synthesised by sol-immobilisation: (a) $Pd_{SI}/CNF-HHT$, (b) $Pd_{SI}/CNF-LHT$, (c) $Pd_{SI}/CNF-PS$.

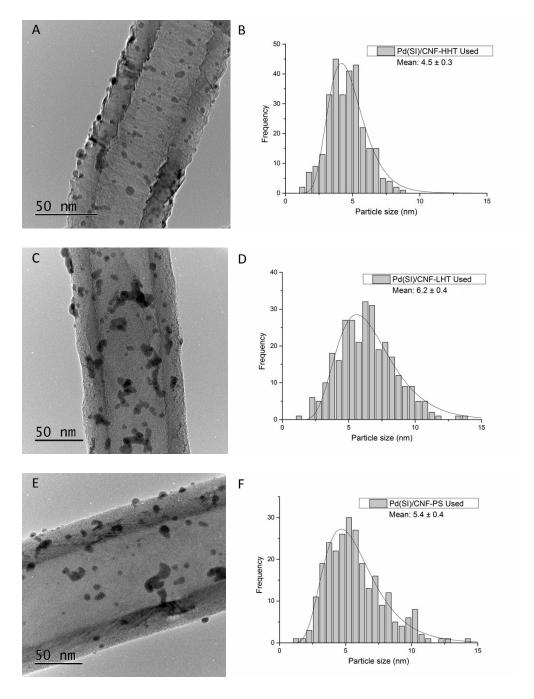

Figure S5. XPS spectra of fresh Pd/CNF in the binding energy region of 525-542 eV corresponding to O1s. (A) Catalyst synthesised by impregnation: (a) $Pd_{IMP}/CNF-HHT$, (b) $Pd_{IMP}/CNF-LHT$, (c) $Pd_{IMP}/CNF-PS$. (B) Catalysts synthesised by sol-immobilisation: (a) $Pd_{SI}/CNF-HHT$, (b) $Pd_{SI}/CNF-LHT$, (c) $Pd_{SI}/CNF-PS$.

Figure S6. Raman spectra of the used samples. (A) Catalyst synthesised by impregnation: (a) Pd_{IMP}/CNF-HHT (black curve), (b) Pd_{IMP}/CNF-LHT (red curve), (c) Pd_{IMP}/CNF-PS (blue curve). (B) Catalysts synthesised by sol-immobilisation: (a) Pd_{SI}/CNF-HHT (black curve), (b) Pd_{SI}/CNF-LHT (red curve), (c) Pd_{SI}/CNF-PS (blue curve).

Figure S7. Bright field TEM micrographs and corresponding histograms of the particle size distributions for the used catalysts prepared by impregnation. (A,B) $Pd_{IMP}/CNF-HHT$, (C,D) $Pd_{IMP}/CNF-LHT$, (E,F) $Pd_{IMP}/CNF-PS$.

Figure S8. Bright field TEM micrographs and corresponding histograms of the particle size distributions for the used catalysts prepared by sol-immobilisation. (A,B) $Pd_{SI}/CNF-HHT$, (C,D) $Pd_{SI}/CNF-LHT$, (E,F) $Pd_{SI}/CNF-PS$.

Catalyst	Temp (°C)	H ₂ (%)	CO ₂ (%)	CO (ppm)	CO/CO ₂
Pd _{IMP} /CNF-HHT	30	6.3	5.7	14.7	0.000258
Pd _{SI} /CNF-HHT	30	5.9	6.3	11.0	0.000175

Table S1. Concentrations of H_2 , CO_2 and CO evolved at 30 °C and ratio CO/CO_2 .