Supplementary Material for

Boosting pseudocapacitive charge storage in in-situ functionalized

carbons with high surface area for high-energy asymmetric

supercapacitors

Hao Zhang, ^{‡a} Mingjie Lu, ^{‡a} Huanlei Wang, ^{*a} Yan Lyu, ^a Dong Li, ^a Shijiao Sun, ^b
Jing Shi, ^a and Wei Liu ^a
^a School of Materials Science and Engineering, Ocean University of China, Qingdao
266100, People's Republic of China
^b College of Materials Science and Engineering, Nanjing Tech University, Nanjing
210009, People's Republic of China
[‡] These authors contribute equally to this work.
* Corresponding author.

E-mail address: huanleiwang@ouc.edu.cn; huanleiwang@gmail.com (H. Wang).

Fig. S1 SEM images of (a) (b) PC, (c) HFJDAC-500, (d) HFJDAC-600, (e) HFJDAC-700, and (f) HFJDAC-800.

Fig. S2 Raman spectra of HFJDAC samples.

Sample	N-6	N-5	N-Q	N-X	O-I	O-II	O-III
PC	28.06	39.34	24.89	7.71	84.56	10.10	5.34
HFJDAC-500	16.05	58.12	14.39	11.44	25.07	67.57	7.36
HFJDAC-600	23.73	48.10	16.94	11.23	23.04	65.01	11.95
HFJDAC-700	0	71.25	23.56	5.19	46.66	38.64	14.70
HFJDAC-800	0	63.80	36.20	0	32.68	58.13	9.19

Table S1 Relative surface concentrations (%) of nitrogen and oxygen speciesobtained by fitting N1s and O1s core level XPS spectra.

Potential (V vs. Hg/HgO)

Fig. S8 Specific capacitances (mA h g⁻¹) at different current densities.

Table S2 Specific capacitance of HFJDAC-600 versus recently published state-of

 the-art carbons, all tested in a three-electrode system.

Carbon Type	Capacitance (F g ⁻¹)	Current Density/ Scan Rate	Electrolyte	Reference	
HFJDAC-600	430	1 A g ⁻¹	2 M KOH	This work	
Multi-heteroatom self-doped	295/246	1 A a-1	1 M H ₂ SO ₄ /	1	
porous carbon	383/340	I A g ·	1 M KOH	1	
Porous carbon nanosheets	470	1 A g ⁻¹	6 M KOH	2	
Doped carbon nanoflakes	474	0.5 A g ⁻¹	2 M KOH	3	
Peanut-shell-like porous carbon	356	1 A g ⁻¹	$1 \text{ M H}_2 \text{SO}_4$	4	
Functionalized three- dimensional grapheme networks	442.8	2 mV s ⁻¹	6 M KOH	5	
Nitrogen-doped carbon networks	296	2 mV s ⁻¹	6 M KOH	6	

Biomass-derived 3D	356	1 A g ⁻¹	6 M KOH	7
hierarchical porous carbon		C		
Sodium glutamate		0 7 1 1	<i></i>	2
derived micro/mesoporous	406	0.5 A g ⁻¹	6 M KOH	8
carbon				
Nitrogen-enriched	641.6	1 A g ⁻¹	6 M KOH	9
hierarchically porous carbons				
Honeycomb-like porous carbon	342	0.2 A g ⁻¹	6 M KOH	10
Biomass-derived carbon fiber	283	1 A g ⁻¹	6 М КОН	11
aerogel		8		
Nitrogen and sulfur co-doped	298	0 5 A g ⁻¹	6 М КОН	12
porous carbon nanosheets	270	0.0 11 5	0 WI KOII	12
Nitrogen-doped porous carbon	364	06 A g ⁻¹	6 М КОН	13
superstructures	501	0.0115	0 10 10011	15
Human hair-derived carbon	340	1 Δ σ ⁻¹	6 М КОН	14
flakes	540	IAg	0 WI KOII	14
Stacked layer-like porous	200	1 41	6 M KOH	15
carbon	366	1 A g ⁻¹		15
Hierarchically porous and		1	6 M KOH	
heteroatom doped carbon	286.6	0.5 A g ⁻¹		16
Hierarchical carbon	401	5 A g ⁻¹	1 M H ₂ SO ₄	17
Heteroatom-containing porous			6 M KOH	
carbons	287	1 A g-1		18
Highly functionalized activated		1	1 M H ₂ SO ₄ /	
carbons	481/445	0.5 A g ⁻¹	1 M KOH	19
Nitrogen-doped porous	a. / =	1	<i></i>	• •
carbon buildings	347	1 A g-1	6 M KOH	20
Nitrogen-doped hierarchical		1	0.5M	
micro/mesoporous carbon nets	537.3	0.5 A g ⁻¹	H_2SO_4	21
Hierarchically porous nitrogen-				
doped carbon	383	1 A g ⁻¹	$1 \text{ M H}_2 \text{SO}_4$	22
Interconnected honeycomb-		1		
like porous carbon	493	0.2 A g ⁻¹	$2 \text{ M H}_2 \text{SO}_4$	23
Hollow activated carbon				
nanomesh	314.6	1 A g ⁻¹	6 M KOH	24
Egg protein derived carbon	482	0.1 A g ⁻¹	1 M H ₂ SO ₄	25
Coca Cola [®] derived carbon	352.7	1 A g ⁻¹	6 M KOH	26
Three-dimensional laminated		0		-
porous carbon network	337.4	0.5 A g ⁻¹	6 M KOH	27
Porous carbon	350	1 A g ⁻¹	6 М КОН	28
Biomass-derived hierarchical		0		
porous carbon	336	1 A g ⁻¹	6 M KOH	29
Nitrogen-doped porous carbon	429	1 A g ⁻¹	6 M KOH	30

Pine cone biochar carbon	361	10 mV s ⁻¹	$1 \text{ M H}_2\text{SO}_4$	31
Black liquor-derived porous carbon	337	0.5 A g ⁻¹	6 M KOH	32
Biomass-derived interconnected carbon	532.5/350	1 A g ⁻¹	1 M H ₂ SO ₄ / 1 M KOH	33
Hierarchical porous graphitic carbons	274	1 A g ⁻¹	6 М КОН	34
Biomass organs pyrolyzed carbon	174	5 mV s ⁻¹	6 M KOH	35
Nitrogen-doped porous carbons	267	1 A g ⁻¹	2 M KOH	36

Fig. S9 Comparison of the gravimetric capacitance of the HFJDAC-600 electrodes at different mass loading tested in a 2 M KOH electrolyte at a current density of 0.5 A g⁻¹ between -1 and 0 V.

Fig. S10 Cycling stability of HFJDAC-600 tested at 20 A g⁻¹ for 10,000 cycles.

Trasatti Method Analysis

We select Trasatti method to assess the capacitance contribution of jelly fish derived carbons.³⁷ The main formulas are as follows:

The gravimetric specific capacitance of electrode in three-electrode configuration was calculated according to the CV curves at different scan rates based on the following equation:

$$C = (\int I \, \mathrm{d}V) / (m \cdot v \cdot V)$$

where *C* (F g⁻¹) indicates the gravimetric capacitance, *I* (A) indicates the current density, *m* (g) indicates the mass of the active material in the electrode, *v* (V s⁻¹) indicates the scan rate, and *V*(V) indicates the voltage window.

The maximum gravimetric capacitance (C_m) can be calculated based on the following equation:

$C^{-1} = constant \cdot v^{1/2} + C_m^{-1}$

where *C* denotes the calculated gravimetric capacitance, *v* denotes the scan rate, and C_m denotes the maximum gravimetric capacitance. The "maximum gravimetric capacitance (C_m)" is equal to the total of electrical double layer capacitance and pseudocapacitance. C_m equals the reciprocal of the y-intercept of the C^{-1} vs. $v^{1/2}$ plot (Fig. S11, left columns).

Plotting the calculated gravimetric capacitances (*C*) against the reciprocal of square root of scan rates ($v^{-1/2}$) gives the opportunity to calculate the maximum electrical double layer capacitance (C_e) based on the following equation:

$$C = constant \cdot v^{-1/2} + C_e$$

where *C* represents the calculated gravimetric capacitance, *v* represents the scan rate, and C_e represents the maximum electrical double layer capacitance. Linear fit the plot and extrapolate the fitting line to y-axis gives the C_e (Fig. S11, right columns). Subtraction of C_e from C_m yields the maximum pseudocapacitance (C_p).

Finally, the capacitance contribution from electrical double layer capacitance and pseudocapacitance can be calculated as follows:

$$C_e\% = (C_e/C_m) \cdot 100\%$$

$C_p\% = (C_p / C_m) \cdot 100\%$

where C_e % is the capacitance percentage of electrical double layer capacitance and C_p % is the capacitance percentage of pseudocapacitance.

Fig. S12 (a) SEM image and (b) T = M image of NiCo₂O₄/GR, (c) XRD pattern of NiCo₂O₄/GR, the diffragition peak marked with * is indexed as (002) graphitic peak associated with the graphene normalized manufakes, while the other peaks are indexed as equilibrium NiCo₂O₄.

2 theta (degrees)

Fig. S13 Specific capacitances of $NiCo_2O_4/GR$ at different current densities in a three-electrode system tested in 2M KOH.

Fig. S14 Specific capacitances of AC at different current densities in a three-electrode system tested in 2M KOH.

Table S3 Comparison of NiCo $_2O_4$ /GR//HFJDAC-600 with previously reportednickel/cobalt based asymmetric cells.

Comple	Specific cap	acity (F g ⁻¹)	Enorgy nowon dongity	Deferrer	
Sample	Positive Negative		Energy-power density	Kelerence	
NiCo O /CD//HEIDAC 600	700	290	43.4 W h kg ⁻¹ at 187 W kg ⁻¹	This worl-	
NIC0204/GK//HFJDAC-000	/00	389	13.3 W h kg ⁻¹ at 16.4 kW kg ⁻¹	This work	
	1470	187	37.4 W h kg ⁻¹ at 163 W kg ⁻¹	20	
$NI_x CO_{3-x}O_4//AC$	14/9		20.9 W h kg ⁻¹ at 4.1 kW kg ⁻¹	38	
	012 (37.8 W h kg ⁻¹ at 187.5 W kg ⁻¹	20	
$NIC0_2O_4(a)MINO_2//AC$	915.0	-	13.3 W h kg ⁻¹ at 7.5 kW kg ⁻¹	39	
	856	180	27.8 W h kg ⁻¹ at 128 W kg ⁻¹		
CQDS/MC0 ₂ O ₄ //AC			13.1 W h kg ⁻¹ at 10.2 kW kg ⁻¹	40	
			42.3 W h kg ⁻¹ at 476 W kg ⁻¹		
NIC0284//G/C8	1036	-	22.9 W h kg ⁻¹ at 10.2 kW kg ⁻¹	41	
	2200	120	50.6 W h kg ⁻¹ at 95 W kg ⁻¹	42	
$NI(OH)_2/CN1//AC$	3300	120	32.5 W h kg ⁻¹ at 1.8 kW kg ⁻¹		
N'O/OD //UDMONIT	1200		32 W h kg ⁻¹ at 700 W kg ⁻¹	43	
NIO/GK//HPNCNI	1200	270	17 W h kg ⁻¹ at 42 kW kg ⁻¹		
	700.2.01	261.8 C g ⁻¹	36.2 W h kg ⁻¹ at 100.6 W kg ⁻¹		
β -N1(OH) ₂ /N1-foam//AC	/90.3 C g ⁻¹		10.5 W h kg ⁻¹ at 0.7 kW kg ⁻¹	44	
0.00	2223	-	43.5W h kg ⁻¹ at 87.5W kg ⁻¹	4.5	
CoO@ppy//AC			11.8 W h kg ⁻¹ at 5.5 kW kg ⁻¹	45	
	650	550	48W h kg ⁻¹ at 230W kg ⁻¹	10	
NIC0204/GR//HFAC			28 W h kg ⁻¹ at 1.9 kW kg ⁻¹	19	
	636	210	35.7W h kg ⁻¹ at 225W kg ⁻¹	16	
C0 ₃ O ₄ /IGO//AC			30.2 W h kg ⁻¹ at 3.7 kW kg ⁻¹	40	
Ni(OII) /CD//manana CD	1735	245	77.8W h kg ⁻¹ at 174.7W kg ⁻¹	47	
NI(OH) ₂ /GK//porous GK			13.5 W h kg ⁻¹ at 15.2 kW kg ⁻¹	47	
	618	171	19.5W h kg ⁻¹ at 150W kg ⁻¹	48	
NIC02O4/GK//AC			7.5W h kg ⁻¹ at 5.6 kW kg ⁻¹		
Co. O. //Corbon	504	272	36W h kg ⁻¹ at 1600W kg ⁻¹	40	
C0 ₃ O ₄ //Carbon			15.4W h kg ⁻¹ at 7.9kW kg ⁻¹	49	
CNIT/NE(OII) //=CO	1269		35.24W h kg ⁻¹ at 1807W kg ⁻¹	50	
0-CN1/NI(OH) ₂ //rGO	1308	-	26.24W h kg ⁻¹ at 27kW kg ⁻¹	30	
moro NiO/Ni 2//CNCa	2735	226	19.1 W h kg ⁻¹ at 700 W kg ⁻¹	51	
			11.7 W h kg ⁻¹ at 13.6 kW kg ⁻¹		
$7nC_{0} \cap NiM_{0} \cap //AC$	1480.5	-	48.6 W h kg ⁻¹ at 112.7 W kg ⁻¹	52	
			13 W h kg ⁻¹ at 2.8 kW kg ⁻¹		
NiCo O rCO//rCO	D 1185	-	33.5 W h kg ⁻¹ at 523.2 W kg ⁻¹	53	
MC0204-IGO//IGO			19.8 W h kg ⁻¹ at 8.9 kW kg ⁻¹	55	
ZnCo ₂ O ₄ /NG//AC	301.8	208	28 3 W h kg ⁻¹ at 500 W kg ⁻¹	54	
	501.8	208	2010 11 ILE 41 000 11 Kg	51	

			15.1 W h kg ⁻¹ at 9.9 kW kg ⁻¹		
Co ₃ O ₄ //AC	1087.3	140	32.8 W h kg ⁻¹ at 752 W kg ⁻¹	55	
			20.3 W h kg ⁻¹ at 11.2 kW kg ⁻¹		
	149.5mAh g ⁻¹	-	31.35 W h kg ⁻¹ at 252.8 W kg ⁻¹	56	
$C_{09}S_8(a)NI(OH)_2//AC$			12.5 W h kg ⁻¹ at 2.5 kW kg ⁻¹		
NiCo2O4/NSCS//NGN/CNT	722		47.65 W h kg ⁻¹ at 536 W kg ⁻¹	57	
S	/33	-	28.94 W h kg ⁻¹ at 13.0 kW kg ⁻¹	57	
Carbon black/NiCo ₂ O ₄ //AC	1215	173.6	33.7 W h kg ⁻¹ at 150.1 W kg ⁻¹	59	
			15.1 W h kg ⁻¹ at 12.2 kW kg ⁻¹	58	
C/CoNi ₃ O ₄ //AC	855.5	129.8	29.1 W h kg ⁻¹ at 130.4 W kg ⁻¹	50	
			19.2 W h kg ⁻¹ at 13.0 kW kg ⁻¹	53	

Notes and references

- L. Hu, J. Hou, Y. Ma, H. Li and T. Zhai, J. Mater. Chem. A, 2016, 4, 15006-15014.
- 2 C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher and M. Yu, *Nano Energy*, 2016, **27**, 377-389.
- 3 N. Mao, H. Wang, Y. Sui, Y. Cui, J. Pokrzywinski, J. Shi, W. Liu, S. Chen, X. Wang and D. Mitlin, *Nano Res.*, 2017, **10**, 1767-1783.
- 4 X. Wei, S. Wan, X. Jiang, Z. Wang and S. Gao, *ACS Appl. Mater. Interfaces*, 2015, **7**, 22238-22245.
- 5 X. Wu, D. Yang, C. Wang, Y. Jiang, T. Wei and Z. Fan, Carbon, 2015, 92,

26-30.

- 6 C. Long, D. Qi, T. Wei, J. Yan, L. Jiang and Z. Fan, *Adv. Funct. Mater.*, 2014, 24, 3953-3961.
- S. Song, F. Ma, G. Wu, D. Ma, W. Geng and J. Wan, J. Mater. Chem. A, 2015, 3, 18154-18162.
- 8 W. Qian, J. Zhu, Y. Zhang, X. Wu and F. Yan, *Small*, 2015, **11**, 4959-4969.
- 9 L. Wan, J. Wang, L. Xie, Y. Sun and K. Li, ACS Appl. Mater. Interfaces, 2014, 6, 15583-15596.
- 10 Q. Liang, L. Ye, Z. H. Huang, Q. Xu, Y. Bai, F. Kang and Q. H. Yang, Nanoscale, 2014, 6, 13831-13837.
- P. Cheng, T. Li, H. Yu, L. Zhi, Z. Liu and Z. Lei, J. Phys. Chem. C, 2016, 120, 2079-2086.
- 12 Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, *Nano Energy*, 2016, **19**, 165-175.
- 13 Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y. Tang, J. Jiang, D. Wu and X. Feng, *Adv. Mater.*, 2016, 28, 1981-1987.
- W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang and F. Yan, *Energy Environ*.
 Sci., 2014, 7, 379-386.
- X. Zhang, Y. Jiao, L. Sun, L. Wang, A. Wu, H. Yan, M. Meng, C. Tian, B. Jiang and H. Fu, *Nanoscale*, 2016, 8, 2418-2427.
- Y.-Q. Zhao, M. Lu, P.-Y. Tao, Y.-J. Zhang, X.-T. Gong, Z. Yang, G.-Q.
 Zhang and H.-L. Li, *J. Power Sources*, 2016, **307**, 391-400.
- J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu, Y. Zhao, K. Ni, Z. Tao, M. Ikram, H. Ji and Y. Zhu, *Adv. Mater.*, 2016, 28, 5222-5228.
- 18 J. Zhu, D. Xu, W. Qian, J. Zhang and F. Yan, *Small*, 2016, **12**, 1935-1944.
- 19 Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C. M. B. Holt, X. Tan and D. Mitlin, *Energy Environ. Sci.*, 2014, 7, 1708-1718.
- L. Jiang, L. Sheng, X. Chen, T. Wei and Z. Fan, J. Mater. Chem. A, 2016, 4, 11388-11396.
- 21 L.-N. Han, X. Wei, Q.-C. Zhu, S.-M. Xu, K.-X. Wang and J.-S. Chen, J. Mater. Chem. A, 2016, 4, 16698-16705.

- P. Yu, Z. Zhang, L. Zheng, F. Teng, L. Hu and X. Fang, *Adv. Energy Mater.*, 2016, 6, 1601111.
- 23 Y. Zhang, X. Liu, S. Wang, S. Dou and L. Li, J. Mater. Chem. A, 2016, 4, 10869-10877.
- 24 X.-L. Su, M.-Y. Cheng, L. Fu, J.-H. Yang, X.-C. Zheng and X.-X. Guan, J. Power Sources, 2017, 362, 27-38.
- H. Ma, C. Li, M. Zhang, J.-D. Hong and G. Shi, J. Mater. Chem. A, 2017, 5, 17040-17047.
- Y. Boyjoo, Y. Cheng, H. Zhong, H. Tian, J. Pan, V. K. Pareek, S. P. Jiang, J.F. Lamonier, M. Jaroniec and J. Liu, *Carbon*, 2017, 116, 490-499.
- C. Wang, Y. Xiong, H. Wang, C. Jin and Q. Sun, J. Mater. Chem. A, 2017, 5, 15759-15770.
- J. Shao, F. Ma, G. Wu, C. Dai, W. Geng, S. Song and J. Wan, *Chem. Eng. J.*, 2017, 321, 301-313.
- 29 Y. Liu, B. Huang, X. Lin and Z. Xie, J. Mater. Chem. A, 2017, 5, 13009-13018.
- 30 T. Ouyang, K. Cheng, Y. Gao, S. Kong, K. Ye, G. Wang and D. Cao, J. Mater. Chem. A, 2016, 4, 9832-9843.
- 31 M. Genovese and K. Lian, J. Mater. Chem. A, 2017, 5, 3939-3947.
- 32 L. Zhu, F. Shen, R. L. Smith, L. Yan, L. Li and X. Qi, *Chem. Eng. J.*, 2017, 316, 770-777.
- 33 X. Wei, Y. Li and S. Gao, J. Mater. Chem. A, 2017, 5, 181-188.
- 34 F. Ma, D. Ma, G. Wu, W. Geng, J. Shao, S. Song, J. Wan and J. Qiu, *Chem. Commun.*, 2016, **52**, 6673-6676.
- 35 Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.-H. Yang and J. Luo, *Adv. Funct. Mater.*, 2017, 27, 1604687.
- 36 Y. Cui, H. Wang, X. Xu, Y. Lv, J. Shi, W. Liu, S. Chen and X. Wang, Sustainable Energy Fuels, 2018, 2, 381-391.
- Z. H. Huang, T. Y. Liu, Y. Song, Y. Li and X. X. Liu, *Nanoscale*, 2017, 9, 13119-13127.

- 38 X. Wang, C. Yan, A. Sumboja and P. S. Lee, *Nano Energy*, 2014, **3**, 119-126.
- Y. Zhang, B. Wang, F. Liu, J. Cheng, X. Zhang and L. Zhang, *Nano Energy*, 2016, 27, 627-637.
- Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia and X. Ji, *J. Mater. Chem. A*, 2015, 3, 866-877.
- L. Shen, L. Yu, H. B. Wu, X. Y. Yu, X. Zhang and X. W. Lou, *Nat. Commun.*, 2015, 6, 6694.
- 42 Z. Tang, C. Tang and H. Gong, *Adv. Funct. Mater.*, 2012, 22, 1272-1278.
- H. Wang, H. Yi, X. Chen and X. Wang, J. Mater. Chem. A, 2014, 2, 3223-3230.
- 44 J. Huang, P. Xu, D. Cao, X. Zhou, S. Yang, Y. Li and G. Wang, *J. Power Sources*, 2014, **246**, 371-376.
- 45 C. Zhou, Y. Zhang, Y. Li and J. Liu, *Nano Lett.*, 2013, **13**, 2078-2085.
- L.-J. Xie, J.-F. Wu, C.-M. Chen, C.-M. Zhang, L. Wan, J.-L. Wang, Q.-Q.
 Kong, C.-X. Lv, K.-X. Li and G.-H. Sun, *J. Power Sources*, 2013, 242, 148-156.
- J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F.
 Wei, *Adv. Funct. Mater.*, 2012, 22, 2632-2641.
- H. Wang, C. M. B. Holt, Z. Li, X. Tan, B. S. Amirkhiz, Z. Xu, B. C. Olsen, T. Stephenson and D. Mitlin, *Nano Res.*, 2012, 5, 605-617.
- 49 R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim, and Y. Yamauchi, ACS Nano, 2015, 9, 6288–6296.
- 50 R. R. Salunkhe, J. Lin, V. Malgras, S. X. Dou, J. H. Kim and Y. Yamauchi, *Nano Energy*, 2015, **11**, 211-218.
- H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li, R. Che, Z. Lyu, J. Xiong, L. Yang, X.
 Wang and Z. Hu, *Energy Environ. Sci.*, 2016, 9, 2053-2060.
- 52 J. Hong, Y.-W. Lee, D. Ahn, S. Pak, J. Lee, A. R. Jang, S. Lee, B. Hou, Y. Cho, S. M. Morris, H. S. Shin, S. Cha, J. I. Sohn and J. M. Kim, *Nano Energy*, 2017, **39**, 337-345.
- 53 S. A.-Rubaye, R. Rajagopalan, S. X. Dou and Z. Cheng, J. Mater. Chem. A,

2017, 5, 18989-18997.

- 54 X. Ma, P. Zhang, Y. Zhao, Y. Liu, J. Li, J. Y. Zhou, X. Pan and E. Xie, *Chem. Eng. J.*, 2017, **327**, 1000-1010.
- 55 Z. Xiao, L. Fan, B. Xu, S. Zhang, W. Kang, Z. Kang, H. Lin, X. Liu, S. Zhang and D. Sun, ACS Appl. Mater. Interfaces, 2017, 9, 41827-41836.
- 56 F. Zhu, M. Yan, Y. Liu, H. Shen, Y. Lei and W. Shi, *J. Mater. Chem. A*, 2017,
 5, 22782-22789.
- 57 H. Tong, S. Yue, L. Lu, F. Jin, Q. Han, X. Zhang and J. Liu, *Nanoscale*, 2017,
 9, 16826-16835.
- 58 D. Zha, Y. Fu, X. Gao, L. Zhang and X. Wang, *Electrochim. Acta*, 2017, 257, 494-503.
- J. Zhu, J. Jiang, Z. Sun, J. Luo, Z. Fan, X. Huang, H. Zhang and T. Yu, *Small*, 2014, 10, 2937-2945.