Supplementary Information

Efficient Hydrogen Generation from Water using Nanocomposite flakes based on Graphene and Magnesium.

Bartali R.^{1*}, Speranza G.¹, K.F.Aguey-Zinsou², Testi M.¹, Micheli V.¹, Canteri R.¹, Fedrizzi M.¹, Gottardi G.¹, Coser G.¹, Crema L.¹, Pucker G.¹, Setijani E.^{1,2}, and Laidani N¹.

1) Fondazione Bruno Kessler, Center Materials and Microsystems Via Sommarive 18, 38100 Italy.

2) MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, Australia

Supplementary Note 1: S1 Sketch of Deposition of Mg on G by plasma sputtering Supplementary Note 2: S2 Hydrogen generation using Mg/G exposed to Nitrogen and Air Supplementary Note 3: S3 SEM and EDX

Supplementary Note 4: S4 XRD spectra of adhesive tape Mg/G after the reaction with water Supplementary Note 5: S5 XPS Survey spectra, Atomic concentration of Mg C and O on Mg/G before and after the immersion in water by XPS

Supplementary Note 6: S6 Video of H2 Bubble produced by Mg/G in water

Supplementary Note 7: S7 Video of H2 generation and energy production using a Fuel cell

Supplementary Note 8: S8 Spectra of Air lab by PTRMS

Supplementary Note 9: S9 Energy density calculation of Mg/G powder deposited at 60 min. Supplementary Note S10 Energy density of Mg/G and other technologies to store the energy

S1 Sketch of Deposition of Mg on G by plasma sputtering

S3 SEM and EDX

The EDX analysis of Mg/G (30 min deposition). The peak of magnesium reveals that the primary material present on the surface of G is magnesium. Carbon peak is the signal due to the G substrate; we detected carbon because the scanning depth of EDX is quite high (> 1 micron) and because the Mg surface is not entirely uniform.

S4 XRD spectra of Mg/G after the reaction with water

X-Ray diffraction pattern of sample holder [a], Graphene/Magnesium samples [b] and subtraction curve [c]

S5 Survey XPS spectra, and Atomic concentration of Mg C and O on Mg/G before and after the immersion in water by XPS

survey

Table 1. The surface chemical composition of Mg/G (60 min) as determined by XPS analysis before and after the reaction of Mg/G with water.

	Binding	At%	At%
	Energy	as-prepared	After reaction
	eV		With Water
C1s		73.84	61.37
C-C	284.35	60.44	47.9
C-O C-OH	286.3	8.75	5.77
C=0	288.08	1.95	2.49
π-π*	290.54	5.7	5.21
O1s		17.61	29.24
Mg(OH) ₂	530.92	6.86	9.38
CO-Mg(O)	532.34	9.08	13.59
H ₂ O	534.19	1.68	6.26
Mg2p		8.54	9.39
Mg(OH) ₂	50.1	4.38	4.35
Mg(O)	51.5	3.35	4.60
-	52.11	0.82	0.44

S6: Video of the H₂ bubbles produced by Mg/G in water

bubble	hydrogen generation.avi

S7: Video of H2 generation and energy production using a Fuel cell

S8 Spectra of Air lab as determined by PTRMS

Spectra of AirLab

S9 Energy **density calculations:**

$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$$

 $\Delta H_r = -354 \text{ kJ mol}^{-1}$

The reaction needs for 1 mole H₂ 2 mole of water and produce hydrogen gas and heat

A) Hydrogen production evaluation:

Mass of powder Mg Graphene

 $m_{Powder} = 0.001 \text{ g}$

H₂ Gravimetric storage density

 $\rho_{g/g}\!\!=\!\!3\%$

Hydrogen evolution from powder

 $m_{H2} = m_{Powder} \ge \rho_{g/g} = 3e-5 g$

Energy Balance:

LHV_{H2}=119 k/g

Chemical energy in produced hydrogen:

 E_{H2} = LHV_{H2}x m_{H2}=3.57 J

For a energy density based on powder of:

 $E_{H2}^{powder} = E_{H2} / m_{Powder} = 3.57 \ kJ/g$

B) Heat production by Gr+Mg powder and water reaction

Based on the number of Mg moles reacted:

$$Mg + H_2O -> Mg(OH)_2 + H_2$$

 $n_{H2} = n_{Mg}$

So, considering the previous H2 production, m_{H2} ,

 $n_{Mg} = n_{H2} = m_{H2}/PM_{H2} = 1.5e-5$ moles

Considering, Enthalpy of Mg and water reaction equals to $\Delta H= 354$ kJ/moles, it is possible to evaluate total heat released by chemical reaction of Hydrogen production,

 $E_{heat} = n_{Mg} x \Delta H = 5.31 j$

So, from previous calculation it is possible to resume total output energy of reaction between Mg(Graphene) powder and water for a unit of mass: $E_{heat}^{powder} = E_{heat} / m_{Powder} = 5.31 \text{ kJ/g}$ With a total energy balance of:

 $E_{tot} = E_{heat}^{powder} + E_{H2}^{powder} = 3,51 \text{ kJ} + 5.31 \text{ KJ} = 8,81 \text{KJ/gr}$

C) Estimation of water consumption

The Stoichiometric quantity of consumed water by reaction is:

 $n_{H2O}= 2 \ x \ n_{H2} == 3.2e-5moles$

For a mass of:

 $m_{H2O} = n_{H2O} \times PM_{H2O} = 54.045e-5 g$

And a total consumption for mass unit of powder of,

 $m_{H2O}^{powder} = m_{H2O}/m_{Powder} = 0.57 g_{H2O}/gp_{owder}$

Finally, considering also the water amount in the total energy balance, the density of energy from the powder (Mg+graphene) and water system is:

 $m_{tot} = m_{H2O}^{powder} + m_{Powder} = 1.57 \text{ g}$

for a energy density of,

 $\rho^{Energy}_{tot} = E_{tot} / m_{tot} = 5.61 \text{ kJ/g}$

Or considering only chemical energy released as H₂ gas,

 $\rho^{H2}_{tot} = \!\! E_{heat}^{powder} \! / \ m_{tot} \! = \! 2.23 \ kJ/g$

S10 Energy density of Mg/G and other technologies to store the energy

	Energy density
	kJ/gr
Compressed Hydrogen (700 atm)	150
Mg/Gr theoretical	14
Mg/Gr(this work)	3.5 (H ₂)+5.3(Heat)
Lithium battery	1-2
Fly wheel	1
Ni-Cd	1
Lead acid battery	0.18