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Materials and methods 

All chemicals and reagent grade solvents were obtained from commercial vendors and were used 
as received. 1H and 13C NMR spectra were obtained at room temperature on a Bruker AV400 MHz 
spectrometer, with chemical shifts (δ) referenced to the residual solvent signal (1H and 13C). 
GC/MS analysis was carried out using a Hewlett-Packard 6890 GC system equipped with a 
Hewlett-Packard 5973 mass selective detector. FT-IR measurements were collected on a Perkin 
Elmer Spectrum Two FT-IR, where a drop of compound was pressed between two KBr plates, FT-
IR shifts are: very strong (vs), strong (s), medium (m), and weak (w). Combustion calorimeter 
measurements were performed using an IKA C1 compact combustion calorimeter, the NHOC was 
calculated by taking into consideration the hydrogen content and subtracting from the gross heat 
of combustion. DSC measurements were performed using a Netzsch DCS 204 F1 Phoenix. 
Viscosity and density measurements were performed using an Anton Paar SVM 3001. Elemental 
analysis was performed by Atlantic Microlabs. YSI measurements were performed by Prof. 
Charles McEnally at Yale University. 
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Scheme S1. Synthesis of 2-(1-Ethylpropyl)-4,5-dimethyl-1,3-dioxolane (1).  

Synthesis of 2-(1-Ethylpropyl)-4,5-dimethyl-1,3-dioxolane (1). 2-Ethylbutyraldehyde (3.135 g, 
31.30 mmol), 2,3-Butanediol (4.685 g, 46.77 mmol), and Amberlyst 15 (0.198 g) were combined 
in a 20 mL scintillation vial. The apparatus was heated to 40 ℃ with stirring (500 rpm). After 4 h 
the reaction was allowed to sit for 15 min, where two distinct layers formed, the top layer contained 
the reaction product while the bottom (aqueous) layer contained remaining 2,3-Butanediol and 
water. The organic phase was decanted and an aliqout diluted with methanol for GCMS to reveal 
> 99 % conversion to the desired product. An aliquot of the resulting liquid was analyzed by NMR 
to yield 1 as a mixture of three diastereomers (5.084 g, 96.6% isolated yield).  
1H NMR (400 MHz, Chloroform-d) δ 5.06 (d, J = 3.5 Hz, 0.2H), 4.96 (d, J = 3.2 Hz, 0.2H), 4.78 
(d, J = 3.3 Hz, 0.6H), 4.17 (q, J = 5.3 Hz, 0.4H), 4.07 (q, J = 5.4 Hz, 1.2H), 3.54 (app. oct., J = 6.6 
Hz, 0.4H), 1.58 – 1.28 (m, 5H), 1.25 (d, J = 5.7 Hz, 0.7H), 1.19 (d, J = 5.7 Hz, 0.7H), 1.10 (d, J = 
5.2 Hz, 4.6H), 0.89 (app. t, J = 7.2 Hz, 6H). Note: Fractional hydrogen integrations represent 
diastereomeric ratios. 
13C NMR (101 MHz, Chloroform-d) δ 105.11, 104.96, 104.20, 79.53, 78.12, 74.29, 74.07, 45.43, 
44.98, 44.42, 24.86, 21.07, 21.00, 20.97, 20.94, 17.34, 16.78, 15.36, 14.28, 11.51, 11.44, and 
11.38. 

FTIR (cm-1): 2966 (vs), 2937 (s), 2877 (s), 1458 (m), 1419 (w), 1380 (m), 1339 (w), 1182 (w), 
1105 (vs), 1038 (m), 983 (w), and 924 (w). 

Anal. Calcd for C10H20O2: C, 69.72; H, 11.70. Found: C, 69.61; H, 11.80. 
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Scheme S2. Synthesis of 2-(1-Ethylpentyl)-4,5-dimethyl-1,3-dioxolane (2). 

Synthesis of 2-(1-Ethylpentyl)-4,5-dimethyl-1,3-dioxolane (2). 2-Ethylhexanal (4.346 g, 33.89 
mmol), 2,3-Butanediol (6.030 g, 60.20 mmol), and Amberlyst 15 (0.201 g) were combined in a 20 
mL scintillation vial. The apparatus was heated to 40 ℃ with stirring (500 rpm). After 6 h the 
reaction was allowed to sit for 15 min, where two distinct layers formed, the top layer contained 
the reaction product while the bottom (aqueous) layer contained remaining 2,3-Butanediol and 
water. The organic phase was decanted and an aliqout diluted with methanol for GCMS to reveal 
> 99 % conversion to the desired product.An aliquot of the resulting liquid was analyzed by NMR 
to yield 2 as a mixture of three diastereomers (6.520 g, 96.1% isolated yield). 
1H NMR (400 MHz, Chloroform-d) δ 5.08 (d, J = 3.8 Hz, 0.2H), 4.99 (d, J = 2.9 Hz, 0.2H), 4.80 
(d, J = 3.1 Hz, 0.6H), 4.20 (q, J = 5.1 Hz, 0.3H), 4.09 (h, J = 6.4 Hz, 1.2H), 3.56 (app. oct., J = 6.5 
Hz, 0.5H), 1.59 –1.24 (m, 9.5H), 1.21 (d, J = 5.7 Hz, H), 1.13 (d, J = 5.2 Hz, 4.5H), 0.91 (m, J = 
9.2, 6.5 Hz, 6H). Note: Fractional hydrogen integrations represent diastereomeric ratios. 
13C NMR (101 MHz, Chloroform-d) δ 105.26, 105.11, 104.34, 79.53, 78.15, 74.32, 74.08, 74.32, 
74.08, 74.06, 43.94, 43.44, 42.87, 29.47, 29.39, 28.17, 28.14, 28.07, 23.16, 23.11, 21.57, 21.52, 
21.47, 17.35, 16.77, 15.34, 14.27, 14.03, 11.56, 11.49, and 11.41. 

FTIR (cm-1): 2960 (vs), 2931 (vs), 2873 (vs), 1457 (m), 1378 (m), 1340 (w), 1309 (w), 1179 (w), 
1108 (vs), 1039 (m), 1000 (w), and 972 (w). 

Anal. Calcd for C12H24O2: C, 71.95; H, 12.08. Found: C, 71.01; H, 12.35. 
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Scheme S3. Synthesis of 4,5-Dimethyl-2-propyl-1,3-dioxolane (3).  

Synthesis of 4,5-Dimethyl-2-propyl-1,3-dioxolane (3). Butyraldehyde (4.028 g, 55.86 mmol), 2,3-
Butanediol (8.028 g, 89.08 mmol), and Amberlyst 15 (0.401 g) were combined in a 20 mL 
scintillation vial. The apparatus was stirred (500 rpm) at room temperature. After 4 h the reaction 
was allowed to sit for 15 min, where two distinct layers formed, the top layer contained the reaction 
product while the bottom (aqueous) layer contained remaining 2,3-Butanediol and water. The 
organic phase was decanted and an aliqout diluted with methanol for GCMS to reveal > 99 % 
conversion to the desired product. An aliquot of the resulting liquid was analyzed by NMR to yield 
3 as a mixture of three diastereomers (7.494 g, 93.0% isolated yield).  
1H NMR (400 MHz, Chloroform-d) δ 5.13 (t, J = 4.9 Hz, 0.1H), 4.99 (t, J = 4.7 Hz, 0.3H), 4.82 (t, 
J = 4.7 Hz, 0.6H), 4.17 (p, J = 5.3 Hz, 0.2H), 4.06 (h, J = 6.3 Hz, 1.1H), 3.73 (d, J = 5.4 Hz, 0.1H), 
3.55 (q, J = 6.0 Hz, 0.6H), 1.66 – 1.32 (m, 4H), 1.24 (d, J = 5.0 Hz, 2H), 1.17 (d, J = 5.1 Hz, 2H), 
1.09 (d, J = 5.4 Hz, 4H), 0.90 (t, J = 7.4 Hz, 3H). Note: Fractional hydrogen integrations represent 
diastereomeric ratios. 
 
13C NMR (101 MHz, Chloroform-d) δ 103.12, 103.01, 102.32, 79.66, 78.00, 74.29, 74.10, 70.74, 
37.33, 36.76, 36.73, 17.31, 17.23, 17.20, 16.91, 15.41, 14.22, and 14.00. 

FTIR (cm-1): 2962 (vs), 2935 (vs), 2874 (vs), 1459 (m), 1378 (s), 1322 (w), 1234 (w), 1147 (s), 
1120 (vs), 1032 (w), 983 (w), 957 (m), 911 (m), and 837 (w).  

Anal. Calcd for C8H16O2: C, 66.63; H, 11.18. Found: C, 66.17; H, 11.41. 
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Scheme S4. Synthesis of 4,5-Dimethyl-2-pentyl-1,3-dioxolane (4).  

Synthesis of 4,5-Dimethyl-2-pentyl-1,3-dioxolane (4). Hexanal (4.029 g, 40.22 mmol), 2,3-
Butanediol (7.772 g, 86.24 mmol), and Amberlyst 15 (0.413 g) were combined in a 20 mL 
scintillation vial. The apparatus was stirred (500 rpm). After 4 h the reaction was allowed to sit for 
15 min, where two distinct layers formed, the top layer contained the reaction product while the 
bottom (aqueous) layer contained remaining 2,3-Butanediol and water. The organic phase was 
decanted and an aliqout diluted with methanol for GCMS to reveal > 99 % conversion to the 
desired product. An aliquot of the resulting liquid was analyzed by NMR to yield 4 as a mixture 
of three diastereomers (6.571 g, 94.8% isolated yield).  
1H NMR (400 MHz, Chloroform-d) δ 5.13 (t, J = 5.0 Hz, 0.1H), 4.98 (t, J = 4.8 Hz, 0.3H), 4.81 (t, 
J = 4.8 Hz, 0.6H), 4.16 (p, J = 5.4 Hz, 0.2H), 4.06 (h, J = 6.3 Hz, 1.1H), 3.73 (q, J = 5.6 Hz, 0.1H), 
3.55 (dd, J = 7.7, 4.6 Hz, 0.6H), 1.59 (qd, J = 7.4, 5.0 Hz, 2H), 1.44 – 1.21 (m, 7H), 1.18 (d, J = 
5.1 Hz, 1H), 1.10 (d, J = 5.3 Hz, 4H), 0.92 – 0.78 (m, 3H). Note: Fractional hydrogen integrations 
represent diastereomeric ratios. 
 
13C NMR (101 MHz, Chloroform-d) δ 103.32, 103.23, 102.52, 79.67, 78.01, 74.30, 74.12, 70.75, 
35.22, 34.67, 31.77, 23.71, 23.58, 22.54, 17.24, 16.98, 16.92, 15.42, 14.22, and 13.92. 

FTIR (cm-1): 2957 (vs), 2931 (vs), 2863 vs), 1460 (m), 1418 (w), 1378 (s), 1145 (s), 1118 (vs), 
1082 (s), 1041 (m), 993 (w), 929 (m), and 889 (w).  

Anal. Calcd for C10H20O2: C, 69.72; H, 11.70; O. Found: C, 69.09; H, 11.77. 
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Scheme S5. Synthesis of 4,5-Dimethyl-2-heptyl-1,3-dioxolane (5).  

Synthesis of 4,5-Dimethyl-2-heptyl-1,3-dioxolane (5). Octanal (4.003 g, 31.22 mmol), 2,3-
Butanediol (7.142 g, 79.25 mmol), and Amberlyst 15 (0.385 g) were combined in a 20 mL 
scintillation vial. The apparatus was heated to 40 ℃ with stirring (500 rpm). After 6 h the reaction 
was allowed to cool for 15 min. Upon cooling, two distinct layers formed, the top layer contained 
the reaction product while the bottom (aqueous) layer contained remaining 2,3-Butanediol and 
water. The organic phase was decanted and an aliqout diluted with methanol for GCMS to reveal 
> 99 % conversion to the desired product. An aliquot of the resulting liquid was analyzed by NMR 
to yield 5 as a mixture of three diastereomers (6.072 g, 97.1 % isolated yield).  
1H NMR (400 MHz, Chloroform-d) δ 5.09 (t, J = 4.9 Hz, 0.1H), 4.95 (t, J = 4.7 Hz, 0.4H), 4.77 (t, 
J = 4.8 Hz, 0.5H), 4.13 (h, J = 5.6 Hz, 0.2H), 4.02 (h, J = 6.2 Hz, 1H), 3.68 (d, J = 5.9 Hz, 0.1H), 
3.51 (dd, J = 7.7, 4.5 Hz, 0.7H), 1.55 (qd, J = 7.4, 4.9 Hz, 1.8H), 1.47 (dd, J = 9.1, 5.1 Hz, 0.2H), 
1.38 – 1.12 (m, 12H), 1.06 (d, J = 5.3 Hz, 4H), 0.80 (t, J = 6.5 Hz, 3H). Note: Fractional hydrogen 
integrations represent diastereomeric ratios. 
 
13C NMR (101 MHz, Chloroform-d) δ 103.27, 103.18, 102.47, 79.62, 77.96, 74.25, 74.06, 70.68, 
35.22, 34.637, 34.65, 31.70, 29.50, 29.46, 29.14, 23.98, 23.85, 22.55, 17.18, 16.94, 16.85, 15.36, 
14.16, and 13.94. 

FTIR (cm-1): 2957 (vs), 2931 (vs), 2866 (vs), 1463 (m), 1413 (w), 1379 (s), 1346 (w), 1320 (w), 
1146 (vs), 1082 (s), 1041 (m), 998 (m), 929 (m), and 893 (w). 

Anal. Calcd for C12H24O2: C, 71.95; H, 12.08. Found: C, 71.77; H, 12.30. 
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Large scale reaction 

A representative example of the scalability of these reactions is as follows. 2-Ethylhexanal (20.066 
g, 156.5 mmol), 2,3-Butanediol (29.248 g, 324.5 mmol), and Amberlyst 15 (1.624 g) were 
combined in a 100 mL round bottom flask. The apparatus was heated to 40 ℃ with stirring (500 
rpm). After 15 h the reaction was allowed to cool for 15 min. Upon cooling, two distinct layers 
formed, the top layer contained the reaction product while the bottom (aqueous) layer contained 
remaining 2,3-Butanediol and water. The organic phase was decanted and an aliqout diluted with 
methanol for GCMS to reveal > 98 % conversion to the desired product. The remaining reaction 
mixture was washed with cyclohexane (3 x 3 mL) and the resultant organic phase again decanted. 
The organic phases were combined and dried over MgSO4. The solvent was removed in vacuo. 
and an aliquot of the resulting liquid was analyzed by NMR to yield 2 as a mixture of three 
diastereomers (30.490 g, 97.3% isolated yield). 

 

 

 

 

 

 

Figure S1. 400 MHz 1H NMR spectrum of (1). 
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Figure S2. 101 MHz 13C NMR spectrum of (1). 

 

Figure S3. GC trace of (1).  
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Figure S4. MS of (1) 

 

 

Figure S5. DSC trace of (1).  
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Figure S6. 400 MHz 1H NMR spectrum of (2). 

 

Figure S7. 101 MHz 13C NMR spectrum of (2). 
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Figure S8. GC trace of (2). 

 

Figure S9. MS of (2) 
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Figure S10. DSC trace of (2). 

 

 

Figure S11. 400 MHz 1H NMR spectrum of (3). 
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Figure S12. 101 MHz 13C NMR spectrum of (3). 

 

Figure S13. GC trace of (3). 
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Figure S14. MS of (3) 

 

 

Figure S15. DSC trace of (3). 



S17 
 

 

Figure S16. 400 MHz 1H NMR spectrum of (4). 

 

Figure S17. 101 MHz 13C NMR spectrum of (4). 



S18 
 

 

Figure S18. GC trace of (4). 

 

 

Figure S19. MS of (4) 
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Figure S20. DSC trace of (4). 

 

Figure S21. 400 MHz 1H NMR spectrum of (5). 
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Figure S22. 101 MHz 13C NMR spectrum of (5). 

 

Figure S23. GCMS trace of (5). 
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Figure S24.  MS of (5) 

 

Figure S25. DSC trace of (5). 
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Catalyst recycling 

 2-Ethylbutyraldehyde (3.215 g, 32.10 mmol), 2,3-Butanediol (4.963 g, 55.07 mmol), and 
Amberlyst 15 (0.350 g) were combined in a 20 mL scintillation vial. The apparatus was heated to 
40 ℃ with stirring (500 rpm). After 5 h the reaction was complete and allowed to cool for 15 min. 
Upon cooling, the organic layer was decanted to yield the desired product, 1, in 100 % selectivity 
as evidenced by GCMS. This process was repeated for catalyst runs 2 through 10. To ensure 
efficient mixing between the aldehyde, BDO, and catalyst, the aqueous layer was removed upon 
completion of runs 3, 5, 7, and 9. Each successive reaction was loaded with 2-Ethylbutyraldehyde 
and 2,3-Butanediol, detailed below in Table S1. 

 

Table S1. Catalyst recycle results. 

 

 

Run 2-Ethylbutyraldehyde (mmol) 2,3-Butanediol (mmol) Isolated yield (%) 

1 32.10 55.07 87.2 
2 32.05 53.99 88.2 
3 31.30 55.84 96.6 
4 31.66 56.71 93.3 
5 31.96 60.25 93.7 
6 32.51 59.55 91.2 
7 32.03 55.69 92.7 
8 31.99 57.45 94.0 
9 31.95 58.08 95.2 
10 32.07 56.92 93.0 
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Figure S26. GCMS traces of catalyst recycle runs 1-10. 

 

Calculation of atom economy and carbon yield 

The following equation was used to determine the atom economy: 

𝑎𝑡𝑜𝑚	𝑒𝑐𝑜𝑛𝑜𝑚𝑦 =	
(𝑚𝑎𝑠𝑠	𝑜𝑓	𝑎𝑡𝑜𝑚𝑠	𝑖𝑛	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑝𝑟𝑜𝑑𝑢𝑐𝑡)

(𝑚𝑎𝑠𝑠	𝑜𝑓	𝑎𝑡𝑜𝑚𝑠	𝑖𝑛	𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠) ∗ 100 

The following equation was used to determine the carbon yield: 

%	𝐶𝑎𝑟𝑏𝑜𝑛	𝑦𝑖𝑒𝑙𝑑 = 	
(𝑚𝑚𝑜𝑙	𝑐𝑎𝑟𝑏𝑜𝑛	𝑖𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡) ∗ (𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑	𝑦𝑖𝑒𝑙𝑑)

(𝑚𝑚𝑜𝑙	𝑐𝑎𝑟𝑏𝑜𝑛	𝑖𝑛	𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡) ∗ 100 

Note that the only side product in this reaction is water, so the carbon efficiency is 100% for every 
reaction, therefore the carbon yield is the same as the isolated yield of analytically pure product. 

 


