Electronic Supporting Information

Mo-doped TiO₂ photoanodes using $[Ti_4Mo_2O_8(OEt)_{10}]_2$ bimetallic oxo cages as a single source precursor

Miriam Regue,^{a,b} Katherine Armstrong,^c Dominic Walsh,^b Emma Richards, ^c Andrew Johnson, ^{a,d} and Salvador Eslava ^{*a,b}

^a Centre for Sustainable Chemical Technologies, University of Bath, Calverton Down, Bath, BA2 7AY, UK

^{b.}Department of Chemical Engineering, University of Bath, Calverton Down, Bath, BA2 7AY, UK

^{c.}EPR and ENDOR Spectroscopy, School of Chemistry, Cardiff University, Cardiff, CF10 3AT

^d.Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Fig. S1 13 C NMR spectra of the –OCH₂– resonance region of [Ti₄Mo₂O₈(OEt)₁₀]₂, in agreement with literature [1]

Fig. S2 SEM images of TiO₂-650 photoanode.

Fig. S3 Cyclic voltammetry curves for (a) TiO₂-650, (b) Mo:TiO₂-650, (c) Mo:TiO₂-700 and (d) Mo:TiO₂-800.

Fig. S4 SEM-EDXS images of Mo:TiO₂ photoanodes. (a-d) Mo:TiO₂-800, (e-h) Mo:TiO₂-700 and (i-l) Mo:TiO₂-650.

Fig. S5 XPS spectra of TiO_2 -650. (a) Survey, (b) O 1s and (c) Ti 2p.

Fig. S6 Particle size distributions. (a) Mo:TiO₂-650, (b) Mo:TiO₂-700 and (c) Mo-TiO₂-800.

 $\label{eq:Fig.S7} \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-650, Mo: TiO_2-700, Mo: TiO_2-800 \text{ and } pure TiO_2-650 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-650, Mo: TiO_2-700, Mo: TiO_2-800 \text{ and } pure TiO_2-650 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-650, Mo: TiO_2-700, Mo: TiO_2-800 \text{ and } pure TiO_2-650 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-650, Mo: TiO_2-800 \text{ and } pure TiO_2-650 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-650, Mo: TiO_2-800 \text{ and } pure TiO_2-650 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-650, Mo: TiO_2-800 \text{ and } pure TiO_2-650 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-650, Mo: TiO_2-800 \text{ and } pure TiO_2-650 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-800 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-800 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-800 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-800 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-800 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-800 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Diffuse reflectance UV-Vis absorption spectra of } Mo: TiO_2-800 \text{ photoanodes.} \\ \textit{Fig.S7} \text{ Photoanodes.} \\ \textit{$

Fig. S8 Cyclic Voltammetry curves of TiO₂-650 and Mo:TiO₂ photoanodes in acetonitrile containing 0.1M of TBAPF₆ at a scan rate of 50 mv s⁻¹.

 Table S1 Electrochemical characteristics of the bare TiO2 and Mo:TiO2 photoanodes.

Sample	E ^{ox} _{peak} (V)/ VB (eV)	E ^{red} _{peak} (V)/ CB (eV)	Eg (eV)
Mo:TiO ₂ -650	2.32 / -6.69	-0.19 / -4.18	2.51
Mo:TiO ₂ -700	2.08 / -6.45	-0.22 / -4.15	2.30
Mo:TiO ₂ -800	2.23 / -6.60	-0.23 / -4.14	2.46
TiO ₂ -650	2.22 / -6.59	-1.36 / -3.01	3.58

Fig. S9 Photocurrent-time curve of Mo:TiO₂-700 obtained during the O₂ measurement experiment at 1.23V_{RHE}.

Faradaic efficiency calculation

To calculate the Faradaic efficiency, first the amount of O_2 evolved in the headspace of the PEC cell was calculated using the ideal gas law and the O_2 measurements. Next, the theoretical amount of O_2 expected for a water oxidation reaction with 100% Faradaic efficiency was calculated. The following equation was used:

$$Q = n(e^{-}) * F$$

where *Q* is the charge in C, obtained from the photocurrent-time curve (Fig. S12); *n* (*e*⁻) is the number of electrons in mol; and *F* is the Faraday constant (96485.3329 C mol⁻¹). The theoretical amount of O_2 generated was calculated by dividing *n* (*e*⁻) by four, which is the number of electrons involved in the oxidation of water. Finally, the Faradaic efficiency was calculated by dividing the amount of O_2 evolved in the headspace by the theoretical amount of O_2 expected for 100% Faradaic efficiency (µmol/µmolx100).²

1 S. Eslava, B. P. R. Goodwill, M. McPartlin and D. S. Wright, Inorg. Chem., 2011, 50, 5655–5662.

2 J. A. Seabold and K.-S. Choi, Chem. Mater., 2011, 23, 1105–1112.