Ethanolic Gasoline, a Lignocellulosic Advanced Biofuel

Mícheál Howard^{1,2}, Gani Issayev³, Nimal Naser³, S. Mani Sarathy³, Aamir Farooq³, Stephen Dooley^{1,2}

¹Department of Chemical Sciences, University of Limerick, Ireland

² School of Physics, Trinity College Dublin, Ireland

³ King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Centre,

Physical Sciences and Engineering Division, Thuwal, Saudi Arabia

Supplementary Information

Departies	Α		Ea	k @ 800 K	Defense
Reaction	(cm ³ mol ⁻¹ s ⁻¹)	n	(cal mol ⁻¹)) (cm³ mol ⁻¹ s ⁻¹)	Reference
R+O2=RO2					
EL1J+O2=EL1OO	7.54x10 ⁺¹²	0	0	7.54x10 ⁺¹²	Analogy to IC3H7+O2<=>C3H7O2 [1]
EL3J+O2=EL3OO	7.54x10 ⁺¹²	0	0	7.54x10 ⁺¹²	Analogy to IC3H7+O2<=>C3H7O2 [1]
EL4J+O2=EL4OO	7.54x10 ⁺¹²	0	0	7.54x10 ⁺¹²	Analogy to IC3H7+O2<=>C3H7O2 [1]
EL6J+O2=EL6OO	7.54x10 ⁺¹²	0	0	7.54x10 ⁺¹²	Analogy to IC3H7+O2<=>C3H7O2 [1]
EL7J+O2=EL7OO	7.54x10 ⁺¹²	0	0	7.54x10 ⁺¹²	Analogy to IC3H7+O2<=>C3H7O2 [1]
RO2=Olefin+HO2					
EL300=EL34D+H02	8.08x10 ⁺¹²	0	32821	8.74x10 ⁺⁰³	Recommended rate involving a peroxy group on a secondary carbon and a H atom on a secondary carbon. [2]
Reverse	5.05x10 ⁺¹⁰	0	10416	7.21x10 ⁺⁰⁷	Recommended rate involving a peroxy group on a secondary carbon and a H atom on a secondary carbon. [3]
EL4OO=EL34D+HO2	8.08x10 ⁺¹²	0	32822	8.73x10 ⁺⁰³	Recommended rate involving a peroxy group on a secondary carbon and a H atom on a secondary carbon. [2]
Reverse	5.05x10 ⁺¹⁰	0	10416	7.21x10 ⁺⁰⁷	Recommended rate involving a peroxy group on a secondary carbon and a H atom on a secondary carbon. [3]
EL600=EL67D+H02	1.06x10 ⁺¹³	0	33040	1.00x10 ⁺⁰⁴	Recommended rate involving a peroxy group on a secondary carbon and a H atom on a primary carbon. [2]
Reverse	6.22x10 ⁺¹⁰	0	8987	2.18x10 ⁺⁰⁸	Recommended rate involving a peroxy group on a secondary carbon and a H atom on a primary carbon. [3]
EL700=EL67D+H02	6.47x10 ⁺¹²	0	31792	1.34x10 ⁺⁰⁴	Recommended rate involving a peroxy group on a primary carbon and a H atom on a secondary carbon. [2]
Reverse	6.45x10 ⁺¹⁰	0	13000	1.81x10 ⁺⁰⁷	Recommended rate involving a peroxy group on a primary carbon and a H atom on a secondary carbon. [3]
RO2=QOOH					
EL100=EL100H3J	2.50x10 ⁺¹⁰	0	20450	6.48x10 ⁺⁰⁴	Analogy to C7H15O2-1<=>C7H14OOH1-3 [1]
EL3OO=EL3OOH1J	3.75x10 ⁺¹⁰	0	24000	1.04x10 ⁺⁰⁴	Analogy to C7H15O2-3<=>C7H14OOH3-1 [1]
EL3OO=EL3OOH4J	2.00x10 ⁺¹¹	0	26450	1.19x10 ⁺⁰⁴	Analogy to C7H15O2-3<=>C7H14OOH3-4 [1]
EL4OO=EL4OOH3J	4.00x10 ⁺¹¹	0	26450	2.38x10 ⁺⁰⁴	Analogy to C7H15O2-4<=>C7H14OOH4-3 [1]
EL6OO=EL6OOH7J	3.00x10 ⁺¹¹	0	29000	3.59x10 ⁺⁰³	Analogy to C7H15O2-2<=>C7H14OOH2-1 [1]
EL7OO=EL7OOH6J	2.00x10 ⁺¹¹	0	26450	1.19x10 ⁺⁰⁴	Analogy to C7H15O2-1<=>C7H14OOH1-2 [1]
QOOH=Olefin+HO2					
EL3OOH4J=EL34D+HO2	1.94x10 ⁺¹³	0	18156	2.13x10 ⁺⁰⁸	Recommended rate involving a peroxy group on a secondary carbon and a H atom on a secondary carbon. [4]

Reverse	1.92x10 ⁺¹²	0	10743	2.23x10 ⁺⁰⁹	Recommended rate involving a peroxy group on a secondary carbon
					Becommonded rate involving a perovy group on a secondary carbon
EL4OOH3J=EL34D+HO2	1.94x10 ⁺¹³	0	18157	2.13x10 ⁺⁰⁸	and a H atom on a secondary carbon [4]
					Recommended rate involving a peroxy group on a secondary carbon
Reverse	1.92x10 ⁺¹²	0	10743	2.23x10 ⁺⁰⁹	and a H atom on a secondary carbon [3]
					Recommended rate involving a peroxy group on a secondary carbon.
EL6OOH7J=EL67D+HO2	1.67x10 ⁺¹³	0	16686	4.61x10 ⁺⁰⁸	and a H atom on a primary carbon [4]
	. 42			. 00	Recommended rate involving a peroxy group on a secondary carbon
Reverse	1.83x10 ⁺¹²	0	13100	4.84x10 ⁺⁰⁸	and a H atom on a primary carbon. [3]
	.12			.00	Recommended rate involving a peroxy group on a primary carbon
EL7OOH6J=EL67D+HO2	3.66x10 ⁺¹³	0	19055	2.28x10 ⁺⁰⁸	and a H atom on a secondary carbon. [4]
_	a i a i a +12	-		+0°	Recommended rate involving a peroxy group on a primary carbon
Reverse	3.18x10 ⁺¹²	0	13380	7.03x10 ⁺⁰⁸	and a H atom on a secondary carbon. [3]
Q00H+02=02Q00H					
EL100H3J+02=>EL100H300	4.52x10 ⁺¹²	0	0	4.52x10 ⁺¹²	Analogy to C3H6OOH2-1+O2<=>C3H6OOH2-1O2 [1]
EL300H1J+02=>EL300H100	4.52x10 ⁺¹²	0	0	4.52x10 ⁺¹²	Analogy to C3H6OOH2-1+O2<=>C3H6OOH2-1O2 [1]
EL3OOH4J+O2=>EL3OOH4OO	4.52x10 ⁺¹²	0	0	4.52x10 ⁺¹²	Analogy to C3H6OOH2-1+O2<=>C3H6OOH2-1O2 [1]
EL4OOH3J+O2=>EL4OOH3OO	4.52x10 ⁺¹²	0	0	4.52x10 ⁺¹²	Analogy to C3H6OOH2-1+O2<=>C3H6OOH2-1O2 [1]
EL6OOH7J+O2=>EL6OOH7OO	4.52x10 ⁺¹²	0	0	4.52x10 ⁺¹²	Analogy to C3H6OOH2-1+O2<=>C3H6OOH2-1O2 [1]
EL700H6J+02=>EL700H600	4.52x10 ⁺¹²	0	0	4.52x10 ⁺¹²	Analogy to C3H6OOH2-1+O2<=>C3H6OOH2-1O2 [1]
O2QOOH=Ketohydroperoxide+OH					
EL100H300=EL10300H+OH	2.50x10 ⁺¹⁰	0	21000	4.58x10 ⁺⁰⁴	Analogy to C7H14OOH1-3O2<=>NC7KET13+OH [1]
EL300H100=EL30100H+0H	1.25x10 ⁺¹⁰	0	17450	2.14x10 ⁺⁰⁵	Analogy to C7H14OOH3-1O2<=>NC7KET31+OH [1]
EL3OOH4OO=EL3O4OOH+OH	1.00x10 ⁺¹¹	0	23450	3.93x10 ⁺⁰⁴	Analogy to C7H14OOH3-4O2<=>NC7KET34+OH [1]
EL4OOH3OO=EL4O3OOH+OH	1.00x10 ⁺¹¹	0	23450	3.93x10 ⁺⁰⁴	Analogy to C7H14OOH4-3O2<=>NC7KET43+OH [1]
EL6OOH7OO=EL6O7OOH+OH	1.00x10 ⁺¹¹	0	23450	3.93x10 ⁺⁰⁴	Analogy to C7H14OOH2-1O2<=>NC7KET21+OH [1]
EL7OOH6OO=EL7O6OOH+OH	2.00x10 ⁺¹¹	0	26000	1.58x10 ⁺⁰⁴	Analogy to C7H14OOH1-2O2<=>NC7KET12+OH [1]
Ketohydroperoxide Decomposition					
EL10300H=OCCH0+C2H5OCOCH2CHO+OH	1.00x10 ⁺¹⁶	0	39000	2.22x10 ⁺⁰⁵	Analogy to NC7KET13<=>NC4H9CHO+CH2CHO+OH [1]
EL3O1OOH=CH2O+C2H5OCOCH2COCOJ+OH	1.00x10 ⁺¹⁶	0	39000	2.22x10 ⁺⁰⁵	Analogy to NC7KET31<=>CH2O+NC4H9COCH2+OH [1]
EL3O4OOH=CH3COCOJ+C2H5OCOCHO+OH	1.00x10 ⁺¹⁶	0	39000	2.22x10 ⁺⁰⁵	Analogy to NC7KET34<=>NC3H7CHO+C2H5CO+OH [1]
EL4O3OOH=CH3COCHO+C2H5OCOCOJ+OH	1.00x10 ⁺¹⁶	0	39000	2.22x10 ⁺⁰⁵	Analogy to NC7KET43<=>C2H5CHO+NC3H7CO+OH [1]
EL60700H=CH3C0C2H4C00C0J+CH2O+OH	1.00x10 ⁺¹⁶	0	39000	2.22x10 ⁺⁰⁵	Analogy to NC7KET21<=>CH2O+NC5H11CO+OH [1]
EL7O6OOH=CH3COC2H4COOCHO+HCO+OH	1.00x10 ⁺¹⁶	0	39000	2.22x10 ⁺⁰⁵	Analogy to NC7KET12<=>NC5H11CHO+HCO+OH [1]
QOOH=Cyclic Ether+OH					

EL100H3J=EL13CY+OH	7.50x10 ⁺¹⁰	0	15250	5.12x10 ⁺⁰⁶	Analogy to C7H14OOH1-3<=>C7H14O1-3+OH [1]
EL3OOH1J=EL13CY+OH	7.50x10 ⁺¹⁰	0	15250	5.12x10 ⁺⁰⁶	Analogy to C7H14OOH3-1<=>C7H14O1-3+OH [1]
EL3OOH4J=EL34CY+OH	6.00x10 ⁺¹¹	0	22000	5.86x10 ⁺⁰⁵	Analogy to C7H14OOH3-4<=>C7H14O3-4+OH [1]
EL4OOH3J=EL34CY+OH	6.00x10 ⁺¹¹	0	22000	5.86x10 ⁺⁰⁵	Analogy to C7H14OOH4-3<=>C7H14O3-4+OH [1]
EL6OOH7J=EL67CY+OH	6.00x10 ⁺¹¹	0	22000	5.86x10 ⁺⁰⁵	Analogy to C7H14OOH2-1<=>C7H14O1-2+OH [1]
EL7OOH6J=EL67CY+OH	6.00x10 ⁺¹¹	0	22000	5.86x10 ⁺⁰⁵	Analogy to C7H14OOH1-2<=>C7H14O1-2+OH [1]
Cyclic Ether Decomposition					
EL13CY+OH=C2H5OCOCH2CHO+HCCO+H2O	2.50x10 ⁺¹²	0	0	2.50x10 ⁺¹²	Analogy to C7H14O1-2+OH<=>PC4H9+C2H3CHO+H2O [1]
EL34CY+OH=C2H5OCOCH2CHO+HCCO+H2O	2.50x10 ⁺¹²	0	0	2.50x10 ⁺¹²	Analogy to C7H14O1-2+OH<=>PC4H9+C2H3CHO+H2O [1]
EL67CY+OH=C5H7O3-OJ+CH2CO+H2O	2.50x10 ⁺¹²	0	0	2.50x10 ⁺¹²	Analogy to C7H14O1-2+OH<=>PC4H9+C2H3CHO+H2O [1]
EL13CY+HO2=C2H5OCOCH2CHO+HCCO+H2O2	5.00x10 ⁺¹²	0	17700	7.31x10 ⁺⁰⁷	Analogy to C7H14O1-2+HO2<=>PC4H9+C2H3CHO+H2O2 [1]
EL34CY+HO2=C2H5OCOCH2CHO+HCCO+H2O2	5.00x10 ⁺¹²	0	17700	7.31x10 ⁺⁰⁷	Analogy to C7H14O1-2+HO2<=>PC4H9+C2H3CHO+H2O3 [1]
EL67CY+HO2=C5H7O3-OJ+CH2CO+H2O2	5.00x10 ⁺¹²	0	17700	7.31x10 ⁺⁰⁷	Analogy to C7H14O1-2+HO2<=>PC4H9+C2H3CHO+H2O4 [1]
EL13CY+CH3=C2H5OCOCH2CHO+HCCO+CH4	2.00x10 ⁺¹¹	0	10000	3.71x10 ⁺⁰⁸	Analogy to C4H8O1-2+CH3<=>CH2O+C3H5-A+CH4 [1]
EL34CY+CH3=C2H5OCOCH2CHO+HCCO+CH4	2.00x10 ⁺¹¹	0	10000	3.71x10 ⁺⁰⁸	Analogy to C4H8O1-2+CH3<=>CH2O+C3H5-A+CH5 [1]
EL67CY+CH3=C5H7O3-OJ+CH2CO+CH4	2.00x10 ⁺¹¹	0	10000	3.71x10 ⁺⁰⁸	Analogy to C4H8O1-2+CH3<=>CH2O+C3H5-A+CH6 [1]
Hydrogen Abstraction from Olefin					
EL34D+H=EL34D4J+H2	6.02x10 ⁺⁰⁵	2.4	2583	1.10x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+H=EL67D6J+H2	6.02x10 ⁺⁰⁵	2.4	2583	1.10x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+OH=EL34D4J+H2O	2.93x10 ⁺⁰⁴	2.53	-1659	1.85x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+OH=EL67D6J+H2O	2.93x10 ⁺⁰⁴	2.53	-1659	1.85x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+CH3=EL34D4J+CH4	9.04x10 ⁻⁰¹	3.46	4598	5.56x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+CH3=EL67D6J+CH4	9.04x10 ⁻⁰¹	3.46	4598	5.56x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+CH3O=EL34D4J+CH3OH	1.90x10 ⁺¹⁰	0	2800	3.26x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+CH3O=EL67D6J+CH3OH	1.90x10 ⁺¹⁰	0	2800	3.26x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+CH3O2=EL34D4J+CH3O2H	1.37x10 ⁺⁰²	3.12	13190	3.89x10 ⁺⁰⁷	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+CH3O2=EL67D6J+CH3O2H	1.37x10 ⁺⁰²	3.12	13190	3.89x10 ⁺⁰⁷	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+HO2=EL34D4J+H2O2	4.33x10 ⁺⁰²	3.01	12090	1.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+HO2=EL67D6J+H2O2	4.33x10 ⁺⁰²	3.01	12090	1.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+O=EL34D4J+OH	1.97x10 ⁺⁰⁵	2.40	1150	8.98x10 ⁺¹¹	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+O=EL67D6J+OH	1.97x10 ⁺⁰⁵	2.40	1150	8.98x10 ⁺¹¹	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+O2=EL34D4J+HO2	1.00x10 ⁺¹³	0	48200	6.80x10 ⁻⁰¹	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+O2=EL67D6J+HO2	1.00x10 ⁺¹³	0	48200	6.80x10 ⁻⁰¹	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+C2H5=EL34D4J+C2H6	1.00x10 ⁺¹¹	0	7900	6.95x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+C2H5=EL67D6J+C2H6	1.00x10 ⁺¹¹	0	7900	6.95x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+C2H5O=EL34D4J+C2H5OH	5.63x10 ⁺¹⁰	0	3650	5.66x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon

EL67D+C2H5O=EL67D6J+C2H5OH	5.63x10 ⁺¹⁰	0	3650	5.66x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+C2H3=EL34D4J+C2H4	2.50x10 ⁺¹¹	0	15450	1.50x10 ⁺⁰⁷	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+C2H3=EL67D6J+C2H4	2.50x10 ⁺¹¹	0	15450	1.50x10 ⁺⁰⁷	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+C2H5O2=EL34D4J+C2H5O2H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+C2H5O2=EL67D6J+C2H5O2H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+CH3CO3=EL34D4J+CH3CO3H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+CH3CO3=EL67D6J+CH3CO3H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+O2CHO=EL34D4J+HO2CHO	2.80x10 ⁺¹²	0	16010	1.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+O2CHO=EL67D6J+HO2CHO	2.80x10 ⁺¹²	0	16010	1.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+C4H9OaOO=EL34D4J+C4H9OaOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+C4H9OaOO=EL67D6J+C4H9OaOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL34D+C4H9ObOO=EL34D4J+C4H9ObOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
EL67D+C4H9ObOO=EL67D6J+C4H9ObOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
Olefin Radical Decomposition by Beta-bond Scission					
EL34D4J=>CH3COCHCCO+C2H5O	2.64x10 ⁺¹⁴	0	53796	5.30x10 ⁻⁰¹	Analogy to reverse of CH3COCH2CHCO + C2H5O = EL4J [5]
CH3COCHCCO=>CH3CO+CO+C2H	7.71x10 ⁺¹²	0	26385	4.78x10 ⁺⁰⁵	Analogy to reverse of CH3CO+C2H3COOH = C5H7O3-2J [5]
EL67D6J=>CH3COCH2CH2COJ+CO+CH2	1.13x10 ⁺²¹	-1.73	40550	8.95x10 ⁺⁰⁴	Analogy to reverse of CH3CHO + CH3COCH2CH2COJ = EL6J [5]
Hydrogen Abstraction from Minor Species					
C2H5OCOCH2CHO+H=C2H5OCOCH2COJ+H2	6.02x10 ⁺⁰⁵	2.4	2583	1.10x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCHO+H=C2H5OCOCOJ+H2	6.02x10 ⁺⁰⁵	2.4	2583	1.10x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COCHO+H=CH3COCOJ+H2	6.02x10 ⁺⁰⁵	2.4	2583	1.10x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COC2H4COOCHO+H=CH3COC2H4COOCOJ+H2	6.02x10 ⁺⁰⁵	2.4	2583	1.10x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCH2CHO+OH=C2H5OCOCH2COJ+H2O	2.93x10 ⁺⁰⁴	2.53	-1659	1.85x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCHO+OH=C2H5OCOCOJ+H2O	2.93x10 ⁺⁰⁴	2.53	-1659	1.85x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COCHO+OH=CH3COCOJ+H2O	2.93x10 ⁺⁰⁴	2.53	-1659	1.85x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COC2H4COOCHO+OH=CH3COC2H4COOCOJ+H2O	2.93x10 ⁺⁰⁴	2.53	-1659	1.85x10 ⁺¹²	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCH2CHO+CH3=C2H5OCOCH2COJ+CH4	9.04x10 ⁻⁰¹	3.46	4598	5.56x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCHO+CH3=C2H5OCOCOJ+CH4	9.04x10 ⁻⁰¹	3.46	4598	5.56x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COCHO+CH3=CH3COCOJ+CH4	9.04x10 ⁻⁰¹	3.46	4598	5.56x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COC2H4COOCHO+CH3=CH3COC2H4COOCOJ+CH4	9.04x10 ⁻⁰¹	3.46	4598	5.56x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCH2CHO+CH3O=C2H5OCOCH2COJ+CH3OH	1.90x10 ⁺¹⁰	0	2800	3.26x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCHO+CH3O=C2H5OCOCOJ+CH3OH	1.90x10 ⁺¹⁰	0	2800	3.26x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COCHO+CH3O=CH3COCOJ+CH3OH	1.90x10 ⁺¹⁰	0	2800	3.26x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COC2H4COOCHO+CH3O=CH3COC2H4COOCOJ+CH3OH	1.90x10 ⁺¹⁰	0	2800	3.26x10 ⁺⁰⁹	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCH2CHO+CH3O2=C2H5OCOCH2COJ+CH3O2H	1.37x10 ⁺⁰²	3.12	13190	3.89x10 ⁺⁰⁷	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCHO+CH3O2=C2H5OCOCOJ+CH3O2H	1.37x10 ⁺⁰²	3.12	13190	3.89x10 ⁺⁰⁷	Assumed to be equal to hydrogen abstraction from tertiary carbon

CH3COCHO+CH3O2=CH3COCOJ+CH3O2H	1.37x10 ⁺⁰²	3.12	13190	3.89x10 ⁺⁰⁷	Assun
CH3COC2H4COOCHO+CH3O2=CH3COC2H4COOCOJ+CH3O2H	1.37x10 ⁺⁰²	3.12	13190	3.89x10 ⁺⁰⁷	Assun
C2H5OCOCH2CHO+HO2=C2H5OCOCH2COJ+H2O2	4.33x10 ⁺⁰²	3.01	12090	1.18x10 ⁺⁰⁸	Assun
C2H5OCOCHO+HO2=C2H5OCOCOJ+H2O2	4.33x10 ⁺⁰²	3.01	12090	1.18x10 ⁺⁰⁸	Assun
CH3COCHO+HO2=CH3COCOJ+H2O2	4.33x10 ⁺⁰²	3.01	12090	1.18x10 ⁺⁰⁸	Assun
CH3COC2H4COOCHO+HO2=CH3COC2H4COOCOJ+H2O2	4.33x10 ⁺⁰²	3.01	12090	1.18x10 ⁺⁰⁸	Assun
C2H5OCOCH2CHO+O=C2H5OCOCH2COJ+OH	1.97x10 ⁺⁰⁵	2.40	1150	8.98x10 ⁺¹¹	Assun
С2Н5ОСОСНО+О=С2Н5ОСОСОЈ+ОН	1.97x10 ⁺⁰⁵	2.40	1150	8.98x10 ⁺¹¹	Assun
CH3COCHO+O=CH3COCOJ+OH	1.97x10 ⁺⁰⁵	2.40	1150	8.98x10 ⁺¹¹	Assun
CH3COC2H4COOCHO+O=CH3COC2H4COOCOJ+OH	1.97x10 ⁺⁰⁵	2.40	1150	8.98x10 ⁺¹¹	Assun
C2H5OCOCH2CHO+O2=C2H5OCOCH2COJ+HO2	1.00x10 ⁺¹³	0	48200	6.80x10 ⁻⁰¹	Assun
C2H5OCOCHO+O2=C2H5OCOCOJ+HO2	1.00x10 ⁺¹³	0	48200	6.80x10 ⁻⁰¹	Assun
CH3COCHO+O2=CH3COCOJ+HO2	1.00x10 ⁺¹³	0	48200	6.80x10 ⁻⁰¹	Assun
CH3COC2H4COOCHO+O2=CH3COC2H4COOCOJ+HO2	1.00x10 ⁺¹³	0	48200	6.80x10 ⁻⁰¹	Assun
C2H5OCOCH2CHO+C2H5=C2H5OCOCH2COJ+C2H6	1.00x10 ⁺¹¹	0	7900	6.95x10 ⁺⁰⁸	Assun
C2H5OCOCHO+C2H5=C2H5OCOCOJ+C2H6	1.00x10 ⁺¹¹	0	7900	6.95x10 ⁺⁰⁸	Assun
CH3COCHO+C2H5=CH3COCOJ+C2H6	1.00x10 ⁺¹¹	0	7900	6.95x10 ⁺⁰⁸	Assun
CH3COC2H4COOCHO+C2H5=CH3COC2H4COOCOJ+C2H6	1.00x10 ⁺¹¹	0	7900	6.95x10 ⁺⁰⁸	Assun
C2H5OCOCH2CHO+C2H5O=C2H5OCOCH2COJ+C2H5OH	5.63x10 ⁺¹⁰	0	3650	5.66x10 ⁺⁰⁹	Assun
C2H5OCOCHO+C2H5O=C2H5OCOCOJ+C2H5OH	5.63x10 ⁺¹⁰	0	3650	5.66x10 ⁺⁰⁹	Assun
CH3COCHO+C2H5O=CH3COCOJ+C2H5OH	5.63x10 ⁺¹⁰	0	3650	5.66x10 ⁺⁰⁹	Assun
CH3COC2H4COOCHO+C2H5O=CH3COC2H4COOCOJ+C2H5OH	5.63x10 ⁺¹⁰	0	3650	5.66x10 ⁺⁰⁹	Assun
C2H5OCOCH2CHO+C2H5O=C2H5OCOCH2COJ+C2H5OH	2.50x10 ⁺¹¹	0	15450	1.50x10 ⁺⁰⁷	Assun
C2H5OCOCHO+C2H5O=C2H5OCOCOJ+C2H5OH	2.50x10 ⁺¹¹	0	15450	1.50x10 ⁺⁰⁷	Assun
CH3COCHO+C2H5O=CH3COCOJ+C2H5OH	2.50x10 ⁺¹¹	0	15450	1.50x10 ⁺⁰⁷	Assun
CH3COC2H4COOCHO+C2H5O=CH3COC2H4COOCOJ+C2H5OH	2.50x10 ⁺¹¹	0	15450	1.50x10 ⁺⁰⁷	Assun
C2H5OCOCH2CHO+C2H5O2=C2H5OCOCH2COJ+C2H5O2H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
C2H5OCOCHO+C2H5O2=C2H5OCOCOJ+C2H5O2H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
CH3COCHO+C2H5O2=CH3COCOJ+C2H5O2H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
CH3COC2H4COOCHO+C2H5O2=CH3COC2H4COOCOJ+C2H5O2H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
C2H5OCOCH2CHO+CH3CO3=C2H5OCOCH2COJ+CH3CO3H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
C2H5OCOCHO+CH3CO3=C2H5OCOCOJ+CH3CO3H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
CH3COCHO+CH3CO3=CH3COCOJ+CH3CO3H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
CH3COC2H4COOCHO+CH3CO3=CH3COC2H4COOCOJ+CH3CO3H	2.80x10 ⁺¹²	0	16000	1.19x10 ⁺⁰⁸	Assun
C2H5OCOCH2CHO+O2CHO=C2H5OCOCH2COJ+HO2CHO	2.80x10 ⁺¹²	0	16010	1.18x10 ⁺⁰⁸	Assun
C2H5OCOCHO+O2CHO=C2H5OCOCOJ+HO2CHO	2.80x10 ⁺¹²	0	16010	1.18x10 ⁺⁰⁸	Assun

ned to be equal to hydrogen abstraction from tertiary carbon ned to be equal to hydrogen abstraction from tertiary carbon

CH3COCHO+O2CHO=CH3COCOJ+HO2CHO	2.80x10 ⁺¹²	0	16010	1.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COC2H4COOCHO+O2CHO=CH3COC2H4COOCOJ+HO2CHO	2.80x10 ⁺¹²	0	16010	1.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCH2CHO+C4H9OaOO=C2H5OCOCH2COJ+C4H9OaOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCHO+C4H9OaOO=C2H5OCOCOJ+C4H9OaOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COCHO+C4H9OaOO=CH3COCOJ+C4H9OaOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COC2H4COOCHO+C4H9OaOO=CH3COC2H4COOCOJ+C4H9OaOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCH2CHO+C4H9ObOO=C2H5OCOCH2COJ+C4H9ObOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
C2H5OCOCHO+C4H9ObOO=C2H5OCOCOJ+C4H9ObOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COCHO+C4H9ObOO=CH3COCOJ+C4H9ObOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
CH3COC2H4COOCHO+C4H9ObOO=CH3COC2H4COOCOJ+C4H9ObOOH	1.81x10 ⁻⁰¹	3.98	9058	2.18x10 ⁺⁰⁸	Assumed to be equal to hydrogen abstraction from tertiary carbon
Decomposition of Minor Species Beta-bond Scission					
C2H5OCOCH2COJ=EFF+CO+CH2	8.83x10 ⁺¹⁴	-0.67	35550	1.95x10 ⁺⁰⁴	Analogy to reverse of C2H3COCH3 + EFF = EL3J [5]
C2H5OCOCH2COCOJ=EE2J+CO+CO	2.63x10 ⁺¹⁰	0.84	26100	5.35x10 ⁺⁰⁵	Analogy to reverse of CH2CO + EE2J = ELCOJ [5]
CH3COCOJ=CH3+CO+CO	1.00x10 ⁺¹⁴	0	31000	3.40x10 ⁺⁰⁵	Analogy to reverse of CH3 + COCHCH2CO2CH2CH3 = EL3J [5]
C2H5OCOCOJ=C2H5O+CO+CO	6.82x10 ⁺¹⁶	-1.34	26930	3.86x10 ⁺⁰⁵	Analogy to reverse of CH3COCH2CHCO + C2H5O = EL4J [5]
CH3COC2H4COOCOJ=CH3COCH2CH2COJ+CO2	1.13x10 ⁺²¹	-1.73	40550	8.95x10 ⁺⁰⁴	Analogy to reverse of CH3CHO + CH3COCH2CH2COJ = EL6J [5]

Table S1. Reaction pathways, estimated rate constants and sources for the reactions of the low temperature ethyl levulinate sub model. Rate coefficients are in the form $k = AT^n exp^{(-Ea/RT)}$.

Mixture #	X _{Ethanol}	X _{Diethyl} Ether	X _{Ethyl} Levulinate	IDT (ms)	Standard Deviation (ms)	Measured DCN	Standard Deviation
1	0	0.75	0.25	2.73	0.04	77.31	1.78
2	0	0.5	0.5	4.28	0.04	48.07	0.41
3	0	0.37	0.63	6.42	0.1	33.42	0.63
4	0	0.25	0.75	12.18	0.32	21.25	0.35
5	0	0.1	0.9	47.84	3.75	10.3	0.36
6	0.1	0.2	0.7	15.89	1.6	18.18	1.2
7	0.1	0.5	0.4	3.01	0.07	67.83	1.65
8	0.1	0.4	0.5	4.46	0.08	46.36	0.78
9	0.1	0.7	0.2	2.91	0.05	70.88	1.55
10	0.25	0.65	0.1	3.17	0.07	63.83	1.65
11	0.25	0.5	0.25	4.38	0.05	47.1	0.53
12	0.25	0.25	0.5	11.81	0.74	21.69	0.8
13	0.25	0.1	0.65	71.39	6.86	8.71	0.32
14	0.25	0	0.75	139.72	5.77	6.83	0.09
15	0.4	0.5	0.1	4.49	0.08	46.01	0.73
16	0.5	0.4	0.1	6.48	0.1	32.8	0.56
17	0.5	0.25	0.25	17.47	0.59	17.13	0.32
18	0.5	0.1	0.4	98.29	9.89	7.72	0.34
19	0.5	0	0.5	136.53	10.46	6.89	0.17
20	0.75	0.2	0.05	63.65	4.15	9.11	0.26
21	0.75	0.1	0.15	101.04	7.9	7.63	0.21
22	0.75	0	0.25	133.99	5.31	6.92	0.09

Table S2. Mixture mole fractions, ignition delay times and ignition quality tester measured derived cetane numbers.

Initial	Initial	Compressed	Compressed	Ignition
(bar)	(K)	(bar)	(K)	Delay Time
(001)	Reaction	Mixture (Mole Fr	actions)	(1113)
Ethyl Levulina	te/Diethyl Ether/Et	hanol/ $O_2/N_2 = 0.01$	24/0.0095/0.013	4/0.2026/0.7621
0.64	229	$\Phi = 1.0$	765	126.9
0.64	228	20.13	705	420.8
0.63	338	20.2	765	391.4
0.63	338	20.19	765	404.2
0.63	353	19.99	793	107.5
0.63	353	20.06	793	105.1
0.63	353	19.88	/92	109.7
0.63	368	19.54	817	40.7
0.63	368	19.61	817	40.7
0.63	368	19.51	817	40.4
0.63	383	19.36	844	17.6
0.63	383	19.64	846	17.1
0.63	383	19.36	844	17.7
0.63	398	19.28	870	8.2
0.63	398	19.32	871	8.1
0.63	398	19.22	870	8.1
0.63	413	19.15	897	4.0
0.63	413	19.12	897	3.9
0.63	413	19.18	897	3.9
1.22	323	39.99	741	185.6
1.22	323	40.10	741	179.6
1.22	323	40.03	741	178.9
1.22	338	39.64	769	70.4
1.22	338	39.64	768	69.9
1.22	338	39.52	768	70.3
1.22	353	39.35	796	29.6
1.22	353	39.31	796	27.2
1.22	353	39.31	796	29.1
1.22	368	38.65	821	13.3
1.23	368	39.11	823	13.0
1.23	368	39.12	823	13.1
1.23	383	38.50	848	5.8
1.23	383	38.66	849	5.7
1.23	383	38.79	849	5.8
1.23	398	38.70	876	2.4
1.23	398	38.44	875	2.0
1.23	398	38.58	876	2.3

Ethyl Levulinate/Diethyl Ether/Ethanol/O ₂ /N ₂ = $0.0063/0.0049/0.0068/0.7758/0.2062$ $\Phi = 0.5$								
0.61	353	19.28	842	151.1				
0.61	353	19.21	841	165.8				
0.61	353	19.19	841	156				
0.61	368	18.88	868	45.8				
0.62	368	19.27	870	39.7				
0.62	368	19.11	868	43.1				
0.62	383	19.43	901	15.6				
0.62	383	19.53	902	15.7				
0.62	383	19.45	900	15.6				
0.62	398	19.33	929	6.8				
0.62	398	19.32	930	6.7				
0.62	398	19.03	927	6.4				
0.62	413	19.12	958	3.2				
0.62	413	19.11	958	3				
0.62	413	19.13	958	3.2				
1.18	323	39.81	790	254.2				
1.18	323	39.74	790	249.3				
1.18	323	39.77	790	247.2				
1.18	338	39.45	820	74.0				
1.18	338	39.33	820	74.5				
1.18	338	39.35	820	74.5				
1.18	353	38.35	846	28.4				
1.19	353	38.60	846	27.6				
1.20	353	39.65	850	27.8				
1.19	368	39.28	880	11.9				
1.19	368	39.31	880	11.7				
1.19	368	39.22	879	11.8				
1.20	383	38.32	905	4.7				
1.21	383	38.90	907	4.7				
1.21	383	39.34	908	5.1				

Reaction Mixture (Mole Fractions) Ethyl Levulinate/Diethyl Ether/Ethanol/ $O_2/N_2 = 0.0063/0.0049/0.0068/0.7758/0.2062$

Table S3. Rapid compression machine initial and compressed conditions, and ignition delay times.

Figure S1. Exemplar rapid compression machine experimental pressure histories for the EL/DEE/EtOH Gasoline at compressed conditions of 20 bar, 793 K and $\Phi = 1.0$.

Figure S2. Comparison of modifications made to the kinetic model developed in this work. Adjustment 1 refers to the standardization of all the H-abstraction rate constants, and Adjustment 2 refers to the increasing of the formation enthalpy of the peroxy alkylhydroperoxide radicals (OOQOOH) in the diethyl ether sub model by 10 kJ/mol. Adjustment 3 refers to the addition of the EL low temperature combustion pathways.

Figure S3. Reacting flux analysis at 65% of the ignition delay time for combustion simulation in a closed constant volume homogenous reactor, for FACE-F, at 750 K, 25 bar, and Φ =1. Oxidation reactions are highlighted in blue and elimination reactions in red.

References:

[1] M. Mehl, W.J. Pitz, C.K. Westbrook, H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst. 33 (2011) 193-200.

[2] S.M. Villano, L.K. Huynh, H.H. Carstensen, A.M. Dean, High-pressure rate rules for alkyl + O2 reactions. 1. The dissociation, concerted elimination, and isomerization channels of the alkyl peroxy radical, J Phys Chem A 115 (2011) 13425-13442.

[3] S.M. Villano, H.H. Carstensen, A.M. Dean, Rate rules, branching ratios, and pressure dependence of the HO2 + olefin addition channels, J Phys Chem A 117 (2013) 6458-6473.

[4] S.M. Villano, L.K. Huynh, H.H. Carstensen, A.M. Dean, High-pressure rate rules for alkyl + O2 reactions. 2. The isomerization, cyclic ether formation, and beta-scission reactions of hydroperoxy alkyl radicals, J Phys Chem A 116 (2012) 5068-5089.

[5] M.K. Ghosh, M.S. Howard, Y. Zhang, K. Djebbi, G. Capriolo, A. Farooq, H.J. Curran, S. Dooley, The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate, Combust. Flame 193 (2018) 157-169.