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1
2 Fig. S1 SEM images of MoO3 at different magnifications.
3

4
5 Fig. S2 (a) EDX spectrum and (b) SEM image of the interlayered carbon obtained by 
6 dissolving MoO3/CHDA in 2 mol·L1 NaOH solution to eliminate host MoO3 layers.
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1 As seen from Fig. S3a and b, the raw MoO3 presents the well-defined (010) crystal 
2 planes with a narrow interlayer spacing about 0.69 nm, showing the typical layered 
3 structure. After introduction of DA, the interlayer spacing of (010) crystal planes is 
4 significantly increased to ~2.65 nm, further demonstrating the successful intercalation 
5 of alkylamines (Fig. S3c and d). A final calcination of MoO3/DA leads to the 
6 formation of sandwich-like MoO3/CDA hybrid nanostructures (Fig. S3e and f).

7
8 Fig. S3 HRTEM images of MoO3 (a, b), MoO3/DA (c, d) and MoO3/CDA (e, f).
9

10 According to the Eq.1 as following:
11 i = avb                   (1)
12 where i is the current, ν is the scan rate, and both a and b are the constant parameters, 
13 the b value can be determined as a slope of the linear plot between log i vs. log ν. 
14 Typically, the b value is equal to 1.0 for non-diffusion-controlled surface capacitive 
15 and 0.5 for diffusion-controlled redox reaction.
16 As shown in Fig. S4a, the fitting results show that the b values in this work are 0.89 
17 and 0.93 at the potentials of 0.08 and 0.49 V, respectively. It further confirms that the 
18 MoO3/CDA has both EDLC and surface redox reactions.
19 In addition, the contribution of the intercalation capacitance can be calculated based 
20 on Eq. 2:
21 i (V) = k1v + k2v1/2          (2)
22 where k1v and k2v1/2 correspond to the surface capacitive current and diffusion-
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1 controlled current, respectively. By plotting i/ν0.5 vs. ν0.5, k1 and k2 can be determined 
2 as the slope and intercept, respectively (Fig. S4b).
3 Fig. S4c shows the percentage of intercalation capacitive at different scan rates and 
4 it can be found that the intercalation capacitance decreases as the scan rate is 
5 increased due to the diffusion limit of the electrolytes. 

6
7 Fig. S4 (a) log i vs. log ν, (b) i/ν0.5 vs. ν0.5, and (c) a bar chart of the diffusion-
8 controlled intercalation capacitance vs. scan rate of MoO3/CDA.
9

10
11 Fig. S5 (a) Cyclic voltammetry curves of MoO3/CDA//EG asymmetric supercapacitor 
12 at increasing voltage window from 1.0 V to 1.6 V (all acquired at 100 mV·s−1) and (b) 
13 Corresponding galvanostatic charge-discharge curves at a current density of 1.0 A·g−1 

14 from 1.0 V to 1.6 V.
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1 Table S1 XPS peak fitting results for MoO3/CPA (a), MoO3/CDA (b) and MoO3/CHDA 

2 (c) in the Mo 3d region.
(a)       Peak Position (eV) Relative peak area (%) FWHM (eV)

Mo4+(3d5/2)
Mo4+(3d3/2)

228.8
233.1

24.2
4.3

1.6
2.1

Mo6+(3d5/2) 231.6 55.2 2.0
Mo6+(3d3/2) 234.6 16.3 1.0

(b)       Peak Position (eV) Relative peak area (%) FWHM (eV)
Mo4+(3d5/2)
Mo4+(3d3/2)

228.8
233.1

30.9
7.3

1.6
2.2

Mo6+(3d5/2) 231.6 46.3 2.1
Mo6+(3d3/2) 234.7 15.5 2.0

(c)       Peak Position (eV) Relative peak area (%) FWHM (eV)
Mo4+(3d5/2)
Mo4+(3d5/2)

228.8
233.1

20.3
8.8

2.0
2.0

Mo6+(3d5/2) 231.5 48.4 1.7
Mo6+(3d3/2) 234.6 22.5 1.5

3

4 Table S2 XPS peak fitting results for MoO3/CPA (a), MoO3/CDA (b) and MoO3/CHDA 

5 (c) in the C 1s region.
(a)      Peak Position (eV) Relative peak Area (%) FWHM (eV)

Mo‒C 283.3 18.7 1.0
C‒H

Intercalated C
283.8
285.3

59.8
21.5

1.4
1.9

(b)     Peak Position (eV) Relative peak Area (%) FWHM (eV)
Mo‒C
C‒H

283.5
284.4

21.2
49.0

1.1
1.1

Intercalated C 285.3 29.8 1.9
(c)     Peak Position (eV) Relative peak Area (%) FWHM (eV)

Mo‒C 284.0 10.5 0.9
C‒H      284.5 61.3 1.2

Intercalated C 286.1 28.2 1.9
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1 Table S3 A comparison of specific capacitance, rate capability and cycle stability of 
2 the present work with those reported MoO3-based asymmetric supercapacitor.

ASC Capacitance
Rate

capability

Cycling
performance Ref

MoO3/CDA//EG
88 F∙g−1

(1 A∙g−1)
69.3%

(1 to 10 A·g−1)
 86.5% (1 A·g−1 for 

5000 cycles)
This 
work

MoO3//AC
68 F∙g−1

(1 A∙g−1)
20.7%

(0.5 to 10 A·g−1)
 113% (2 A·g−1 for 

10000 cycles)
1

MoO3–PPy//CNTs–
MnO2

54 F∙g−1

 (0.25 A∙g−1)
   /                             

76% (5 A·g−1 for 
10000 cycles)

2

WO3–x/MoO3–x// 
PANI/carbon

  216 mF∙cm−2

 (2 mA∙cm−2)
60.2% (2 to 20 
A·g−1 mA∙cm−2)

75% (5 mA∙cm−2

for 10000 cycles)
3

CF/MnO2//CF/MoO3
4.86 mF∙cm−2

 (0.5 mA∙cm−2)
65.8% (0.5 to 5 
mA∙cm−2)

89% (5 mA∙cm−2

for 3000 cycles)
4

MnO2@TiN//N-MoO3-x
10.3 mF∙cm−1

 (0.25 mA∙cm−1)
/

80.3% (100 mV∙s−1

for 5000 cycles)
5

3
4 Reference
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