Supporting Information

Green electrode processing using seaweed-derived mesoporous carbon additive and binder for $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ lithium ion battery electrodes

Sanghoon Kim,^{a,*} Mario De bruyn,^b Nicolas Louvain,^{a,c} Johan G. Alauzun,^a Nicolas Brun,^a Duncan J. Macquarrie,^b Bruno Boury,^a Lorenzo Stievano,^{a,c} P. Hubert Mutin,^a and Laure Monconduit,^{a,c,*}

Fig. S1. SEM images of a) LMO and b) NMC

Fig. S2. a) N_2 adsorption-desorption isotherm and b) BJH pore size distribution (desorption branch) of A800.

Fig.S3. a) Representative galvanostatic charge–discharge curves for A800/alginate electrode (ratio of 9:1) cycled at 100 mA g⁻¹ within 2.8 - 5.0 V vs Li/Li⁺ and b) its long term cycling test.

Fig. 4. SEM images of electrodes before cycling: a) LMO/Super P/PVDF, b) LMO/BC61/alginate and after 10 cycles at C/10: c) LMO/Super P/PVDF, d) LMO/BC61/alginate.

Fig. S5. Long term cycling test for a) LMO/binary carbon/alginate and b) LMO/Super P/PVDF electrodes at 1 C for 100 cycles. The first 3 cycles tested at 0.1 C.

Fig. S6 Equivalent model used for EIS fitting.

	LMO/BC61/alginate	LMO/Super P/PVDF
R _s (ohm)	3.52	3.75
R _{ct} (ohm)	20.16	32.7
R _{sf} (ohm)	87.03	178.3
w (ohm s ^{-1/2})	147.7	214.5

Table S1. Impedance results. R_s stands for the ohmic resistance from the entire system such as the electrolyte, the cables, any copper wire placed between the connectors of the instrument, R_{cf} for the resistance from CEI layer, R_{ct} for the charge transfer resistance, w for Warburg impedance coefficient.