Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Highly selective hydrogenation of biomass-derived 5hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over an acidbase bifunctional hafnium-based coordination polymer catalyst

Lei Hu,*a Xiaoli Dai,a Ning Li,a Xing Tangb and Yetao Jianga

^a Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China

^b College of Energy, Xiamen University, Xiamen 361102, China

*Corresponding Author: hulei@hytc.edu.cn

Telephone/Fax: +86-0517-83526983

Fig. S1 Synthetic process and most possible structure of Hf-DTMP.

Fig. S2 SEM images of Hf-BTC (a), Hf-ICA (b), Hf-IHP (c), Hf-ATMP (d), Sn-DTMP (e)

and Nb-DTMP (f).

Fig. S3 XPS spectra of N 1s (a) and P 2p (b) of Hf-DTMP.

Fig. S4 GC chromatogram for the CTH of HMF in MeOH over Hf-DTMP.

Fig. S6 Pyridine-adsorbed FT-IR spectrum of Hf-DTMP.

Fig. S7 GC chromatogram for the CTH of HMF in sBuOH over Hf-DTMP.

Fig. S8 MS spectrum of BMFA.

Fig. S9 MS spectrum of BHMF.

Fig. S10 ¹H NMR spectrum of purified BHMF.

Fig. S11 GC chromatogram for the CTH of MF in *s*BuOH over Hf-DTMP.

Fig. S12 ¹H NMR spectrum of purified MFA.

Fig. S13 GC chromatogram for the CTH of FF in sBuOH over Hf-DTMP.

Fig. S14 ¹H NMR spectrum of purified FFA.

Fig. S15 GC chromatogram for the CTH of LA in *s*BuOH over Hf-DTMP.

Fig. S16 GC chromatogram for the CTH of EL in *s*BuOH over Hf-DTMP.

Fig. S17 ¹H NMR spectrum of purified GVL.

Fig. S18 GC chromatogram for the CTH of CHN in *s*BuOH over Hf-DTMP.

Fig. S19 ¹H NMR spectrum of purified CHA.

Element	Analyzed content (wt%)	Calculated content (wt%)	Formula
Hf	45.23ª	44.22	
Р	15.07ª	15.36	
С	11.02 ^b	10.71	HT ₅ P ₁₀ C ₁₈ N ₆ O ₃₀ H ₃₆
Ν	4.54 ^b	4.16	

Table S1Element contents of Hf-DTMP.

 $^{\rm a}$ Hf and P were determined by ICP. $^{\rm b}$ C and N were measured by EA.

Catalyst	HMF conversion (%)	BHMF yield (%)
HfCl ₄	50.3	6.5
DTMP	31.7	0.8

 Table S2
 CTH of HMF into BHMF over various catalysts.^a

^a Reaction conditions: 0.2 g catalyst, 0.5 g HMF, 24.5 g sBuOH, 130 °C, 3 h.

Alcohol	Alcohol Reduction potential (kJ/mol)	
MeOH	130.1ª	
EtOH	85.4ª	
nPrOH	87.3 ^b	
iPrOH	70.0 ^b	
<i>n</i> BuOH	79.7 ^b	
sBuOH	69.3 ^b	

 Table S3
 Reduction potentials (RPs) of various alcohols.

^a The numerical values of RPs were calculated according to the definition of RP. ^b The numerical values of RP were obtained from van der Waal et al. (J. Catal. 173 (1998) 74-83).