Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Crab shell-derived honeycomb-like graphitized hierarchically porous

carbons for satisfactory rate performance in all-solid-state supercapacitors

Weiwei Shi^a, Binbin Chang^{*a}, Hang Yin^a, Shouren Zhang, Baocheng Yang^a and Xiaoping Dong^{*b}

^aHenan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China

^bDepartment of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China

*Corresponding author. <u>Tel. Fax: +86 571 87541018.</u> <u>E-mail address: binbinchang@infm.hhstu.edu.cn (B. Chang)</u> <u>xpdong@zstu.edu.cn (X. Dong)</u>

Fig. S1 The elemental mapping of pre-carbonized crab shell precursor at 400 $^{\circ}$ C after immersed by HCl

Fig. S2 The CV curves at 200 mV s⁻¹ (a) and GCD curves at 2 A g⁻¹ (b) of GHPCs, HPCs and GPCs materials

Fig. S3 The CV curves of GPCs (a) and HPCs (b) samples at different scan rates

Fig. S4 Ragone plot of our all-solid-state supercapacitor device compared with other data

Fig. S5 (a) Leakage current curves of the solid-state device charged at 2 mA to 1.0 V and kept at 1.0 V for 2 h. (b) Self-discharge curve of the device after charging at 1.0 V for 15 min. (c) CV curves at 50 mV/s and (d) galvanostatic charge/discharge curves at 1 A/g of the solid-state supercapacitor taken at different time durations

Materials	C _s (F g ⁻¹)	Current density (A g ⁻¹)	Electrolyte	E (Wh kg ⁻¹)	P (W kg ⁻¹)	Electrolyte	Current density (A g ⁻¹)	Ref.
N-doped porous carbon nanofibers/porous silver	244.5/222	1/100	6 M KOH	8.5	250	6 M KOH	1	1
3D hierarchical porous N-doped carbon nanotubes	389/290	1/50	6 M KOH	8.7	195	1 M Na ₂ SO ₄	1	2
N-rich porous graphene-like carbon sheets	261/189	1/100	6 M KOH	6.53	28400	6 M KOH	1	3
N, F-doped mesoporous carbon nanofibers	52.2/43.4	1/10	PVA/H ₂ SO ₄	8.07	248	PVA/H ₂ SO ₄	1	4
ultramicroporous@microporous carbon nanospheres	411/170	1/100	6 M KOH	5.94	50000	6 M KOH	1	5
Pomelo peel derived 3D honeycomb-like porous carbon	342/212	0.2/20	6 M KOH	9.4	100	6 М КОН	0.2	6
Cucumber-derived 2D ultrathin graphene-like porous carbon nanosheeets	143/42	0.2/3	6 M KOH	4.38	450	6 М КОН	0.2	7
Corn cobs-derived hierarchical porous carbon	385/222	1/50	6 M KOH	_	_	_		8
Onion-derived hierarchical porous carbon	179.5/132	0.5/20	6 M KOH	_	_	_	_	9
Gelatin-derived hierarchical porous carbon	312/238	1/20	6 M KOH	_	_	_	_	10
Starch-derived hierarchical porous carbon	229/211	1/10	6 M KOH	_	_	_	_	11
Carrot-derived N, O-enriched hierarchically porous carbons	270/250	0.2/10	6 M KOH	13.9	120	1 M Na ₂ SO ₄	0.2	12
Coconut shell-derived mesoporous activated carbons	246/221	0.25/5	0.5 M H ₂ SO ₄	8.5	220	0.5 M H ₂ SO ₄	0.25	13
Nano-micro carbon spheres@rice straw-derived porous carbon	268/215	1/10	6 M KOH	7.46	500	6 М КОН	1	14
N-doped hierarchical porous carbon	284/227	0.1/10	6 M KOH	9.9	50	6 М КОН	0.1	15
Crab shell-derived graphitized hierarchically porous carbons	367/282	1/100	6М КОН	11.1	100.5	PVA/KOH gel	1	This work

Table S1 The comparison of supercapacitive behavior of GHPCs with reported carbon-based electrode materials

References

- 1 Q. S. Meng, K. Q. Qin, L. Y. Ma, C. N. He, E. Z. Liu, F. He, C. S. Shi, Q. Y. Li, J. J. Li and N. Q. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 30832–30839.
- 2 S. X. Zuo, J. Chen, W. J. Liu, X. Z. Li, Y. Kong, C. Yao and Y. S. Fu, *Carbon*, 2018, **129**, 199–206.
- 3 W. Yang, L. Q. Hou, X. W. Xu, Z. H. Li, X. L. Ma, F. Yang and Y. F. Li, *Carbon*, 2018, **130**, 325–332.
- 4 W. Na, J. Jun, J. W. Park, G. Lee and J. Jang, J. Mater. Chem. A, 2017, 5, 17379–17387.
- 5 M. X. Liu, J. S. Qian, Y. H. Zhao, D. Z. Zhu, L. H. Gan and L. W. Chen, *J. Mater. Chem. A*, 2015, **3**, 11517–11526.
- 6 Q. H. Liang, L. Ye, Z. H. Huang, Q. Xu, Y. Bai, F. Y. Kang and Q. H. Yang, *Nanoscale*, 2014, 6, 13831–13837.
- 7 A. Gopalakrishnan and S. Badhulika, J. Ind. Eng. Chem., 2018, DOI.org/10.1016/j.jiec.2018.07.052.
- 8 P. W. Yang, H. J. Jing, Z. W. Wang, J. H. Li, M. X. Hu, R. T. Lv, R. Zhang and D. L. Chen, J. Colloid Interface Sci., 2018, 528, 208–224.
- 9 W. L. Zhang, J. H. Xu, D. X. Hou, J. Yin, D. B. Liu, Y. P. He and H. B. Lin, *J. Colloid Interface Sci.*, 2018, 530, 338–344.
- 10 Y. H. Shi, L. L. Zhang, T. B. Schon, H. H. Li, C. Y. Fan, X. Y. Li, X. Y. Li, J. P. Zhang and et al., *ACS Appl. Mater. Interfaces*, 2017, 9, 42699–42707.
- 11 J. H. Cao, C. Y. Zhu, Y. Aoki and H. Habazaki, ACS Sustainable Chem. Eng., 2018, 6, 7292– 7303.
- 12 Y. F. Cheng, B. Q. Li, Y. J. Huang, Y. M. Wang, J. C. Chen, D. Q. Wei and et al., *Appl. Surf. Sci.*, 2018, 439, 712–723.
- 13 A. Jain, C. H. Xu, S. Jayaraman, R. Balasubramanian, J. Y. Lee and M. P. Srinivasan, Microporous Mesoporous Mater., 2015, 218, 55–61.
- 14 S. B. Liu, Y. Zhao, B. H. Zhang, H. Xia, J. F. Zhou, W. K. Xie and H. J. Li, J. Power Sources, 2018, 381, 116–126.
- 15 Q. Li, X. Z. Wu, Y. Zhao, Z. C. Miao, L. B. Xing, J. Zhou and S. P. Zhou, ChemElectroChem, 2018, 5, 1606–1614.