# **Electronic Supplementary Information:**

# Suppressing the formation of $NO_x$ and $N_2O$ in a $CO_2/N_2$ dielectric barrier discharge plasma by adding CH<sub>4</sub>: Scavenger chemistry at work

Ramses Snoeckx,<sup>1,2</sup> Karen Van Wesenbeeck,<sup>3</sup> Silvia Lenaerts,<sup>3</sup> Min Suk Cha<sup>1</sup> and Annemie Bogaerts<sup>2</sup>

<sup>1</sup>King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Physical Science and Engineering Division (PSE), Thuwal 23955, Saudi Arabia

<sup>2</sup>Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium

<sup>3</sup>Research group DuEL, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium

E-mail: <a href="mailto:ramses.snoeckx@kaust.edu.sa">ramses.snoeckx@kaust.edu.sa</a>

### **Table of Contents**

| List of Figures (12)                                   | S2  |
|--------------------------------------------------------|-----|
| List of Tables (3)                                     | S2  |
| 1. Materials and methods                               |     |
| 1.1. Plasma reactor                                    | S3  |
| 1.2. Product analysis                                  | S4  |
| 2. Detailed results                                    | S4  |
| 2.1. Experimental input conditions                     | S5  |
| 2.2. Experimental results for CH <sub>4</sub> addition | S5  |
| 2.3. FTIR spectra                                      | S8  |
| 2.4. Detailed de-NOx chemistry                         | S12 |
| 3. Referenes                                           | S16 |

# List of Figures

| Figure S1. Schematic diagram of the experimental setup                                                                                                                                                                      | .S4         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure S2. Correlation between the $CH_4$ concentration and the FTIR absorbance of $CH_4$ at 3028 cr<br>for blank measurements with added $CH_4$                                                                            | n⁻¹,<br>.S6 |
| <b>Figure S3.</b> Correlation between CH <sub>4</sub> concentration and the effectiveness of the conversion of CH <sub>4</sub> ; red line indicates the case in which all the added CH <sub>4</sub> is completely converted | the<br>.S7  |
| Figure S4. FTIR spectrum of E0, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> without CH <sub>4</sub> added                                                                                                                   | .S8         |
| Figure S5. FTIR spectrum of E1, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 0.13 % CH <sub>4</sub> added                                                                                                               | .S8         |
| Figure S6. FTIR spectrum of E2, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 0.25 % CH <sub>4</sub> added                                                                                                               | .S9         |
| Figure S7. FTIR spectrum of E3, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 0.5 % CH <sub>4</sub> added                                                                                                                | .S9         |
| Figure S8. FTIR spectrum of E4, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 0.75 % CH <sub>4</sub> addedS                                                                                                              | \$10        |
| Figure S9. FTIR spectrum of E5, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 1.0 % CH <sub>4</sub> addedS                                                                                                               | \$10        |
| Figure S10. FTIR spectrum of E6, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 1.15 % CH <sub>4</sub> addedS                                                                                                             | 511         |
| Figure S11. FTIR spectrum of E7, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 1.5 % CH <sub>4</sub> addedS                                                                                                              | 511         |
| Figure S12. FTIR spectrum of E8, 1:1 mixture CO <sub>2</sub> :N <sub>2</sub> with 2.0 % CH <sub>4</sub> addedS                                                                                                              | S12         |

# List of Tables

| Table S1. Overview of the compositions of the various gas mixtures used in the experiments                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table S2.</b> Overview of the different FTIR absorbance logging bands for experiments with addition of CH4         S5                     |
| <b>Table S3.</b> Overview of the $CH_4$ conversion, based on the FTIR absorbance at 3028 cm <sup>-1</sup> , for experimentswith added $CH_4$ |

#### 1. Materials and methods

#### 1.1. Plasma reactor

Experiments were carried out in a coaxial DBD reactor, consisting of a stainless steel mesh (high voltage electrode) wrapped over the outside of a quartz tube with an outer diameter of 22 mm and an inner diameter of 16.5 mm. A stainless steel rod with an outer diameter of 13 mm, placed at the center of the tube, was used as ground electrode. The length of the discharge region was 90 mm, with a discharge gap of 1.75 mm, resulting in a discharge volume of 7.4 cm<sup>3</sup>. The DBD reactor was powered by an AC high-voltage power supply (AFS, custom made), providing a maximum peak-to-peak voltage of 40 kV and a variable frequency of 1-90 kHz. CO<sub>2</sub>, N<sub>2</sub>, and CH<sub>4</sub> (Air Liquide, Alphagaz 1, 99.999 %) were used as feed gases, with a total flow rate of 611 mL min<sup>-1</sup>. The CO<sub>2</sub>:N<sub>2</sub> ratio and the CH<sub>4</sub> content were controlled independently with mass flow controllers (Bronkhorst, EL-Flow select F-210CV). The reactor was operated at atmospheric temperature and pressure. The total current was recorded by a Rogowski-type current monitor (Pearson 4100), and a high voltage probe was used to measure the applied voltage. The voltage on the external capacitor (10 nF) was also recorded in order to obtain the charge generated in the discharge. Finally, all the electrical signals were sampled by a fourchannel digital oscilloscope (Picotech PicoScope 64201), and the discharge power was obtained using a control system that calculates the area of the Q-U Lissajous figures. The specific energy input (SEI) was based on the plasma power divided by the total gas flow rate (120 W / 611  $mL \cdot min^{-1} = 12 \text{ kJ } L^{-1}$ ).



Figure S1. Schematic diagram of the experimental setup.

#### **1.2. Product analysis**

We applied Fourier transform infrared spectroscopy (FTIR; Thermo Fischer Scientific, Nicolet 380) to study the formation of NO<sub>x</sub> compounds (i.e., NO, NO<sub>2</sub>, N<sub>2</sub>O<sub>3</sub> and N<sub>2</sub>O<sub>5</sub>) and N<sub>2</sub>O. By inserting a 2-m IR gas cell in the FTIR spectrometer, we obtained an IR absorption spectrum showing all IR active vibrations. During the experiments, an FTIR resolution of 1 cm<sup>-1</sup> was used, resulting in a spectrum being taken every 15 s. FTIR bands corresponding to an IR active functional group of the gases were monitored. Figure S4 shows the spectrum for a 1:1 mixture  $CO_2:N_2$  without the addition of CH<sub>4</sub>. For basic qualitative measurements, this technique provides close-to-real-time information on gas phase production of the N-containing compounds.

#### 2. Detailed results

This section provides detailed information on the input conditions and results.

## 2.1. Experimental input conditions

|                     | CO <sub>2</sub> | $N_2$  | CH <sub>4</sub> | CO <sub>2</sub>     | $N_2$ | CH4  | CO <sub>2</sub> :N <sub>2</sub> | Power |
|---------------------|-----------------|--------|-----------------|---------------------|-------|------|---------------------------------|-------|
| No.                 | mL/min          | mL/min | mL/min          | %                   | %     | %    | Ratio                           | Watt  |
| EO                  | 305             | 305    | 0               | 50                  | 50    | 0    | 1:1                             | 120   |
| <u>CH4</u> addition |                 |        |                 | <u>CH4</u> addition |       |      |                                 |       |
| <b>E1</b>           | 305             | 306    | 0.78            | 49.89               | 49.98 | 0.13 | 1:1                             | 120   |
| E2                  | 305             | 304    | 1.59            | 49.86               | 49.89 | 0.25 | 1:1                             | 120   |
| E3                  | 304             | 304    | 3.11            | 49.72               | 49.77 | 0.51 | 1:1                             | 120   |
| <b>E4</b>           | 303             | 303    | 4.60            | 49.59               | 49.65 | 0.75 | 1:1                             | 120   |
| E5                  | 302             | 302    | 6.09            | 49.47               | 49.53 | 1.00 | 1:1                             | 120   |
| <b>E6</b>           | 302             | 302    | 7.00            | 49.43               | 49.43 | 1.15 | 1:1                             | 120   |
| E7                  | 301             | 301    | 9.18            | 49.22               | 49.28 | 1.50 | 1:1                             | 120   |
| E8                  | 300             | 299    | 12.36           | 49.04               | 48.93 | 2.02 | 1:1                             | 120   |

Table S1. Overview of the compositions of the various gas mixtures used in the experiments.

## 2.2. Experimental results for CH<sub>4</sub> addition

**Table S2.** Overview of the different FTIR absorbance logging bands for experiments with addition of CH<sub>4</sub>.

|                     | NO     | NO <sub>2</sub> | N <sub>2</sub> O | CO     | CH <sub>3</sub> OH | HCN    | NH <sub>3</sub> |
|---------------------|--------|-----------------|------------------|--------|--------------------|--------|-----------------|
| FTIR band           | 1875.5 | 1598.8          | 2233.3           | 2144.1 | 1033.7             | 3334.0 | 996.7           |
| No.                 | а.и.   | а.и.            | а.и.             | а.и.   | а.и.               | а.и.   | а.и.            |
| EO                  | 0.154  | 0.192           | 0.175            | 0.203  | -0.001             | -0.002 | 0.000           |
| <u>CH4 addition</u> |        |                 |                  |        |                    |        |                 |
| <b>E</b> 1          | 0.089  | 0.130           | 0.248            | 0.117  | -0.003             | 0.001  | -0.001          |
| E2                  | 0.089  | 0.111           | 0.252            | 0.109  | -0.002             | 0.003  | -0.006          |
| E3                  | 0.087  | 0.068           | 0.298            | 0.117  | 0.001              | 0.010  | -0.002          |
| <b>E4</b>           | 0.076  | 0.059           | 0.331            | 0.118  | 0.008              | 0.013  | -0.002          |
| E5                  | 0.076  | 0.034           | 0.362            | 0.137  | 0.017              | 0.002  | 0.007           |
| <b>E6</b>           | 0.076  | 0.025           | 0.359            | 0.136  | 0.018              | 0.023  | 0.004           |
| E7                  | 0.067  | 0.011           | 0.420            | 0.154  | 0.038              | 0.041  | 0.020           |
| E8                  | 0.057  | 0.008           | 0.465            | 0.166  | 0.088              | 0.063  | 0.098           |

|                     | Bla                   | ank        | Measu      |                       |                       |  |  |  |
|---------------------|-----------------------|------------|------------|-----------------------|-----------------------|--|--|--|
|                     | CH <sub>4</sub> conc. | absorbance | absorbance | CH <sub>4</sub> conc. | CH <sub>4</sub> conv. |  |  |  |
| No.                 | %                     | а.и.       | а.и.       | %                     | %                     |  |  |  |
| EO                  | 0.00                  | 0.000      | -0.001     | 0.00                  | N.A.                  |  |  |  |
| <u>CH4</u> addition |                       |            |            |                       |                       |  |  |  |
| <b>E1</b>           | 0.128                 | 0.072      | -0.002     | 0.00                  | 100.0                 |  |  |  |
| E2                  | 0.254                 | 0.106      | -0.001     | 0.00                  | 100.0                 |  |  |  |
| E3                  | 0.509                 | 0.175      | 0.024      | 0.014                 | 97.2                  |  |  |  |
| <b>E4</b>           | 0.753                 | 0.180      | 0.048      | 0.053                 | 92.9                  |  |  |  |
| E5                  | 0.998                 | 0.219      | 0.070      | 0.110                 | 89.0                  |  |  |  |
| <b>E6</b>           | 1.146                 | 0.240      | 0.086      | 0.162                 | 85.9                  |  |  |  |
| E7                  | 1.502                 | 0.279      | 0.142      | 0.423                 | 71.8                  |  |  |  |
| <b>E8</b>           | 2.021                 | 0.322      | 0.202      | 0.828                 | 59.0                  |  |  |  |

**Table S3.** Overview of the  $CH_4$  conversion, based on the FTIR absorbance at 3028 cm<sup>-1</sup>, for experiments with added  $CH_4$ .



**Figure S2.** Correlation between the  $CH_4$  concentration and the FTIR absorbance of  $CH_4$  at 3028 cm<sup>-1</sup>, for blank measurements with added  $CH_4$ .

The correlation between the known added  $CH_4$  concentration and the FTIR absorbance of  $CH_4$  at 3028 cm<sup>-1</sup> for the blank measurements (see Figure S2) allowed us to estimate the conversion of  $CH_4$  during our experiments, by correlating the absorbance measured at 3028 cm<sup>-1</sup> for the plasma measurements with the  $CH_4$  concentration, using the following function:

$$y = 0.22297 \cdot x^{0.52386} \iff x = \left(\frac{y}{0.22297}\right)^{\frac{1}{0.52386}}$$
 (eq.1)

The obtained CH<sub>4</sub> concentration was then used, together with the original CH<sub>4</sub> concentration, to calculate the conversion of CH<sub>4</sub> (see Table S3). From Table S3 and Figure S3, it is clear that upon adding more CH<sub>4</sub> the CH<sub>4</sub> conversion starts to decrease and upon adding more than 0.75 to 1.00 % CH<sub>4</sub> (the stoichiometric amount) the conversion starts decreasing more rapidly. In Figure S3 this can be seen through the asymptotic fit through the effective CH<sub>4</sub> conversion.



**Figure S3.** Correlation between CH<sub>4</sub> concentration and the effectiveness of the conversion of CH<sub>4</sub>; the red line indicates the case in which all the added CH<sub>4</sub> is completely converted.

## 2.3. FTIR spectra

FTIR data were obtained by first subtracting the spectra from a blank measurement taken before the plasma was turned on, and then subtracting the spectrum taken for  $H_2O$ .



Figure S4. FTIR spectrum of E0, 1:1 mixture CO<sub>2</sub>:N<sub>2</sub> without CH<sub>4</sub> added.



Figure S5. FTIR spectrum of E1, 1:1 mixture CO<sub>2</sub>:N<sub>2</sub> with 0.13 % CH<sub>4</sub> added.



Figure S6. FTIR spectrum of E2, 1:1 mixture  $CO_2$ :N<sub>2</sub> with 0.25 % CH<sub>4</sub> added.



Figure S7. FTIR spectrum of E3, 1:1 mixture  $CO_2:N_2$  with 0.5 %  $CH_4$  added.



Figure S8. FTIR spectrum of E4, 1:1 mixture  $CO_2$ :N<sub>2</sub> with 0.75 % CH<sub>4</sub> added.



Figure S9. FTIR spectrum of E5, 1:1 mixture  $CO_2:N_2$  with 1.0 %  $CH_4$  added.



Figure S10. FTIR spectrum of E6, 1:1 mixture  $CO_2$ :N<sub>2</sub> with 1.15 % CH<sub>4</sub> added.



Figure S11. FTIR spectrum of E7, 1:1 mixture  $CO_2$ :N<sub>2</sub> with 1.5 % CH<sub>4</sub> added.



Figure S12. FTIR spectrum of E8, 1:1 mixture CO<sub>2</sub>:N<sub>2</sub> with 2.0 % CH<sub>4</sub> added.

#### 2.4. Detailed de-NO<sub>x</sub> chemistry

If we first look at the formation of HCN, the key reactions are:

CH<sub>3</sub> + N → HCN + H<sub>2</sub> 
$$k = 1.40 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^1)$$
 (S1)

$$CH_2 + N \rightarrow HCN + H$$
  $k = 5.00 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^1)$  (S2)

CN + H 
$$\rightarrow$$
 HCN  $k = 1.73 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}(^2)$  (S3)

CH + NO 
$$\rightarrow$$
 HCN + O  $k = 2.01 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^3)$  (S4)

Additionally, from Figure 3b (in the main article), we already know that the HCN concentration increases linearly from the start, indicating that the regular loss processes during the combustion chemistry (leading to prompt NO) appear irrelevant here.<sup>4</sup> This means that instead of being a source of NO (as in the high temperature combustion conditions), in the current low temperature plasma conditions HCN is a sink for the created N species, which also contributes to the suppression of the NO<sub>x</sub> formation by trapping the reactive N radicals.

The  $NH_3$  chemistry appears to be quite different. Figure 3b (from the main paper) reveals that the formation of  $NH_3$  occurs after an excess of  $CH_4$  has been added. If we examine the key formation reactions, we notice that they all rely on  $NH_2$ :

$$NH_2 + NH_2 \rightarrow NH + NH_3$$
  $k = 5.00 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^5)$  (S5)

$$NH_2 + H_2 \rightarrow H + NH_3$$
  $k = 2.10 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^5)$  (S6)

$$NH_2 + H \rightarrow NH_3$$
  $k = 7.36 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}(^6)$  (S7)

This shows that, similarly to what occurs in combustion chemistry,  $NH_x$  interacts with the  $NO_x$  species that are present. When examining the most important reaction rate coefficients for NO and  $NO_2$ , we find that the key  $NO_2$  destruction reactions are:

NO<sub>2</sub> + H 
$$\rightarrow$$
 NO + OH  $k = 1.40 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}(^7)$  (S8)

$$NO_2 + O \rightarrow NO + O_2$$
  $k = 9.71 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}(^8)$  (S9)

NO<sub>2</sub> + OH 
$$\rightarrow$$
 HNO<sub>3</sub>  $k = 7.48 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}(^8)$  (S10)

$$NO_2 + CN \rightarrow NO + NCO$$
  $k = 8.05 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}(^9)$  (S11)

These reactions explain why the  $NO_2$  concentration decreases more rapidly than the NO concentration, as shown in Figure 3a in the main paper, as  $NO_2$  is being converted into NO (and HNO<sub>3</sub>).

The following NO formation reactions occur, through HNO as intermediate:

NH<sub>2</sub> + O 
$$\rightarrow$$
 H + HNO  $k = 7.47 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{10})$  (S12)

$$NH_2 + HNO \rightarrow NH_3 + NO$$
  $k = 3.56 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{11})$  (S13)

$$O + HNO \rightarrow OH + NO$$
  $k = 5.99 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^7)$  (S14)

OH + HNO 
$$\rightarrow$$
 H<sub>2</sub>O + NO  $k = 1.51 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^7)$  (S15)

CH<sub>3</sub> + HNO → CH<sub>4</sub> + NO 
$$k = 1.04 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{12})$$
 (S16)

CH<sub>3</sub>O + HNO → CH<sub>3</sub>OH + NO 
$$k = 5.00 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{13})$$
 (S17)

It is important to note that some of the most important NO destruction reactions taking place simultaneously, lead to the formation of HNO, indicating that there is an important equilibrium between NO and HNO:

NO + H 
$$\rightarrow$$
 HNO  $k = 2.43 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^7)$  (S18)

Additional important NO formation and destruction reactions are:

$$N + OH \rightarrow H + NO$$
  $k = 5.05 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{14})$  (S19)

$$O + NCO \rightarrow CO + NO$$
  $k = 7.51 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 500 \text{ K}(^2)$  (S20)

NO + N 
$$\rightarrow$$
 N<sub>2</sub> + O  $k = 3.11 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{14})$  (S21)

CH + NO 
$$\rightarrow$$
 HCN + O  $k = 2.01 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^3)$  (S22)

As mentioned above, the NH and NH<sub>2</sub> species also play an important role in both the formation and destruction of NO:

NH + O 
$$\rightarrow$$
 H + NO  $k = 1.16 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{10})$  (S23)

NO + NH<sub>2</sub> 
$$\rightarrow$$
 N<sub>2</sub> + H<sub>2</sub>O  $k = 1.24 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{15})$  (S24)

NO + NH<sub>2</sub> 
$$\rightarrow$$
 NNH + OH  $k = 1.37 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{15})$  (S25)

NNH + NO 
$$\rightarrow$$
 N<sub>2</sub> + HNO  $k = 5.00 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^4)$  (S26)

The presence of NH and NCO also create new pathways for the formation of  $N_2O$ :

$$NO + NCO \rightarrow CO + N_2O$$
  $k = 1.54 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{16})$  (S27)

S14/18

$$NO + NH \rightarrow N_2O + H \qquad k = 2.87 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{17}) \qquad (S28)$$

Whereas the presence of CH actively contributes to the destruction of  $N_2O$  through reactions with higher reaction rate coefficients:

$$N_2O + CH \rightarrow HCN + NO$$
  $k = 8.41 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{18})$  (S29)

$$N_2O + CH \rightarrow HCO + N_2$$
  $k = 8.41 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{18})$  (S30)

We also find the traditional combustion pathway for the N<sub>2</sub>O destruction to be irrelevant:

$$N_2O + H \rightarrow N_2 + OH$$
  $k = 3.18 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 375 \text{ K}(^{19})$  (S31)

$$N_2O + OH \rightarrow N_2 + HO_2$$
  $k = 8.09 \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^7)$  (S32)

Finally, the reactions for the formation and destruction of NCO are:

CH + NO 
$$\rightarrow$$
 H + NCO  $k = 3.99 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{20})$  (S33)

$$NO_2 + CN \rightarrow NO + NCO$$
  $k = 8.05 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^9)$  (S34)

$$O_2 + CN \rightarrow O + NCO$$
  $k = 2.42 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^3)$  (S35)

OH + CN 
$$\rightarrow$$
 H + NCO  $k = 7.01 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 500 \text{ K}(^2)$  (S36)

NO + NCO 
$$\rightarrow$$
 CO + N<sub>2</sub>O  $k = 1.54 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{16})$  (S37)

H + NCO 
$$\rightarrow$$
 CO + NH  $k = 8.90 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 500 \text{ K}(^2)$  (S38)

$$O + NCO \rightarrow CO + NO$$
  $k = 7.51 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 500 \text{ K}(^2)$  (S39)

The formed NCO in turn is the precursor to form HNCO through reactions with HCO, HNO and CH<sub>2</sub>O, whose production mechanisms have been described earlier:

HCO + NCO 
$$\rightarrow$$
 HNCO + CO  $k = 7.01 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 500 \text{ K}(^2)$  (S40)

HNO + NCO 
$$\rightarrow$$
 HNCO + NO  $k = 3.01 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 500 \text{ K}(^2)$  (S41)

CH<sub>2</sub>O + NCO → HNCO + HCO 
$$k = 1.00 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 500 \text{ K}(^2)$$
 (S42)

Again the traditional combustion pathway for (H)NCO formation is irrelevant:

HCN + O 
$$\rightarrow$$
 H + NCO  $k = 5.03 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{21})$  (S43)

NCO + H<sub>2</sub> 
$$\rightarrow$$
 HNCO + H  $k = 7.68 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \text{ K}(^{22})$  (S44)

#### **3. References**

- 1 D. Toublanc, J. P. Parisot, J. Brillet, D. Gautier, F. Raulin and C. P. McKay, *Icarus*, 1995, **113**, 2–26.
- 2 W. Tsang, J. Phys. Chem. Ref. Data, 1992, 21, 753–791.
- D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, T. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker and J. Warnatz, *J. Phys. Chem. Ref. Data*, 1994, 23, 847–1033.
- J. A. Miller and C. T. Bowmans, *Prog. Energy Combust. Sci.*, 1989, **15**, 287–338.
- 5 R. Dorai, University of Illinois, 2002.
- 6 K. Schofield, J. Phys. Chem. Ref. Data, 1973, 2, 25–84.
- 7 W. Tsang and J. T. Herron, J. Phys. Chem. Ref. Data, 1991, 20, 609–663.
- R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi and J.
   Troe, J. Phys. Chem. Ref. Data, 1997, 26, 1329–1499.
- 9 J. Park and J. F. Hershberger, J. Chem. Phys., 1993, 99, 3488–3493.

- 10 N. Cohen and K. R. Westberg, J. Phys. Chem. Ref. Data, 1991, 20, 1211–1311.
- 11 A. J. Zhang, A. M. Zhu, J. Guo, Y. Xu and C. Shi, *Chem. Eng. J.*, 2010, **156**, 601–606.
- 12 Y. M. Choi and M. C. Lin, Int. J. Chem. Kinet., 2005, 37, 261–274.
- 13 G. E. McGraw and H. S. Johnston, Int. J. Chem. Kinet., 1969, I, 89–104.
- R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr (Chairman) and J.
   Troe, J. Phys. Chem. Ref. Data, 1989, 18, 881–1097.
- 15 J. Park and M. C. Lin, J. Phys. Chem. A, 1999, 103, 8906–8907.
- 16 M. C. Lin, Y. He and C. F. Melius, J. Phys. Chem., 1993, 97, 9124–9128.
- 17 J. W. Bozzelli, A. Y. Chang and A. M. Dean, *Symp. Combust.*, 1994, **25**, 965–974.
- 18 S. Zabarnick, J. W. Fleming and M. C. Lin, Int. J. Chem. Kinet., 1989, 21, 765–774.
- N. L. Arthur, I. A. Cooper and Y. M. Gershenzon, J. Chem. Soc. Faraday Trans., 1997, 93, 3485–3490.
- A. Bergeat, T. Calvo, N. Daugey, J. C. Loison and G. Dorthe, *J. Phys. Chem. A*, 1998, 102, 8124–8130.
- 21 R. A. Perry and C. F. Melius, *Symp. Combust.*, 1985, **20**, 639–646.
- M. T. Nguyen, D. Sengupta, L. Vereecken, J. Peeters and L. G. Vanquickenborne, J.
   *Phys. Chem.*, 1996, **100**, 1615–1621.