Electronic Supplemental Information for:

A Thermal Energy Storage Prototype using Sodium Magnesium Hydride

Lucas Poupin,^a Terry D. Humphries,^a* Mark Paskevicius,^a and Craig E. Buckley^a

- a. Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- * email: terry_humphries81@hotmail.com

Figure S1. X-ray diffraction pattern of synthesised NaMgH₃ after milling and annealing. (a) Ball-milled with a MgH₂ precursor, (b) Ball-milled with a Mg precursor, (c) hand-ground with a Mg precursor.

XRD patterns of the NaMgH₃ sample after cycling shows (Figure S2) that it remains stable, with minor formation of MgO (< 5 wt%). There is also a higher yield of NaMgH₃ after cycling (89 %) demonstrating that cycling under these temperature and pressure conditions is sufficient.

Figure S2. X-ray diffraction pattern of NaMgH₃ (and 2 mol% TiB₂) (a) before and (b) after cycling 30 times between 400 $^{\circ}$ C and 465 $^{\circ}$ C.

Figure S3. Pressure-Composition-Isotherms, absorption (top) and desorption (bottom), of reactor mix showing desorption and the following absorption.

A Van't Hoff plot is illustrated in Figure S3 by reporting the natural logarithm of the hydrogen pressure for 1.5 wt% of desorption over the inverse of temperature. A linear fit to the data allows the calculation of the entropy and enthalpy of formation.

Figure S4. Van't Hoff plot for pristine $NaMgH_3$ and reactor mix.

Figure S5. Differential scanning calorimetry of pristine (a) NaMgH₃ and (b) reactor mix, for different heating rates.

Figure S6. Kissinger plot for pure $NaMgH_3$ (blue stars), and reactor mix (black circle).