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1 Additional details on Methods
1.1 Description of wall potential

The gel is replicated periodically in the x and y directions of an orthogonal reference frame,
whilst no-flux boundaries are imposed at the bottom (z = 0) and top (z = H) of the sim-
ulation cell to model a hard, flat, and impermeable floor and ceiling. The floor and ceiling
were both modeled as a smooth and flat wall; their interaction with particles depends only
on the distance of the center of the particle from the wall. Particles are prevented from
passing through the wall via a steep repulsive potential. When particles approach the wall
within 0.1 of their radius, the same physical attraction has twice the magnitude as the
interparticle attraction because the wall does not diffuse.1 LAMMPS2 molecular dynamics
package simulates a no-flux wall with an attractive potential via a Lennard-Jones potential,
Vi,w:

Vi,w(rw) =

⎧⎨
⎩

4ε
[(

σ
ri,w

)12−
(

σ
ri,w

)6
]
, ri,w ≤ rcut,w

0, r > rcut,w.
(1)

Here, ri,w is the distance of the particle center from the wall. The parameters σ , ε, and
rcut,w are tuned to recover the magnitude and length scale of the Morse potential between
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Figure S1: Elastic (G′) and viscous (G′′) moduli of a gel formed with V0 = 5kT aged in the presence of walls
prior to onset of gravity.

a particle and a wall, leading to rcut,w = 0.32a, σ = 0.11a, and

ε =
2V0

1+4
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1.2 Viscous and elastic moduli of initial gel

Linear-response moduli, G′ and G′′, are interrogated for the sample prior to gravitational
loading to model the rheological properties of the gel. Following aging of the gel in
the presence of the wall up to 500a2/D, a small-amplitude oscillatory shear is imposed
γ̇(t) = γ̇0 cos(ωt), where γ̇0 is the amplitude of oscillation, ω is the frequency, and t is the
time during the oscillatory cycle. The particle-phase stress was monitored throughout the
oscillatory cycle and the elastic module G′ and viscous modulus G′′ were computed for a
frequency sweep 0.4≤α ≤ 400. The moduli were normalized on kT/a3, and plotted against
the frequency, made dimensionless on the Brownian time, α ≡ ωa2/D in Figure S1. The
resulting moduli reveal that the elastic modulus dominates over viscous moduli over all
examined frequencies, providing evidence that the gel is initially an elastic network.
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2 Variation of volume fraction and gel morphology with Pe and V0/kT
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Figure S2: Layer-by-layer evolution of volume fraction in horizontal slices in the simulation cell, at several
instants in time spanning the duration of collapse. Increasing gravitational forcing or particle weight, Pe,
going from left to right, and increasing attraction strength, V0/kT , from top to bottom.
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Figure S3: Snapshots of the gel with bond strength V0 = 5kT and particle weight Pe = 0.1 at several instants
during sedimentation. Particles are colored according to the number of nearest-neighbor bonds, from red
for zero or few bonds, to blue for many bonds.
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Figure S4: Snapshots of the gel with bond strength V0 = 6kT and particle weight Pe = 0.1 at several instants
during sedimentation. Particles are colored according to the number of nearest-neighbor bonds, from red
for zero or few bonds, to blue for many bonds.

3 Scaling of fall speed
Quantitative analysis of initial fall speed U0 and peak fall speed Umax as they vary with bond
strength reveals that increasing the strength of interparticle bonds actually amplifies the
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Figure S5: (a) Initial sedimentation rate, and (b) peak sedimentation rate, plotted as a function of particle
weight, Pe.

fast-collapse sedimentation rate. Both U0 and Umax are normalized on the diffusive speed
of a particle alone in the solvent, and are plotted as a function of particle weight Pe, for two
bond strengths, V0/kT , in Figures S5a and S5b respectively. The initial sedimentation rate
scales approximately linearly in Pe during induction, U0 ∼ Pem with m slightly smaller than
unity for weaker bonds. Surprisingly, the peak sedimentation rate (Figure S5b) shows that
Umax ∼ Pem with m ≥ 1, where stronger bonds give a larger value of m. That is, as V0/kT
weakens, m→ 1 as expected for a sedimenting suspension. When bonds are stronger, the
gel falls faster. This result is counter-intuitive if one expects stronger bonds to produce a
stronger gel network, i.e., that stronger bonds give a higher yield stress.

4 Additional data for collapsing gel for Pe = 0.05 and V0 = 5kT
4.1 Zoomed-in snapshots near the ceiling

To connect pore growth adjacent to the ceiling, ,microstructural snapshots of the top 20%
of the container are shown in Figure S6, where the vertical location of the pores adjacent
to the ceiling are outlined in white. To track descent of the bulk of the gel, we select some
solvent pores in the bulk, trace their outlines and track their temporal evolution. The
same pores are monitored at t̂ = 12 in yellow, at t̂ = 40 in green, and at t̂ = 120 in cyan.
Particles are colored according to the number of nearest-neighbor bonds, ranging from red
for zero bonds (free diffusers) to white for several bonds, to blue for 10-12 bonds. Pore
outlines reveal that beyond the tipping point, pores beneath the surface grow laterally
and vertically, indicating that gravity enhances coarsening not only near the surface, but
also in the bulk of the gel. Eventually, pore growth dissolves some strands (red arrow
in Figure S6c) as particles migrate to lower-energy regions. As a strand narrows and
slowly dissolves, it exposes new surface particles and free diffusers. The newly exposed
high-energy surface smooths itself as particles seek to increase their contact number, i.e.
coarsening continues.
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Figure S6: Zoomed-in view of the top 20% of the container showing the evolution of pores via particle
migration. Particles are colored according to the number of nearest-neighbor bonds, from red for zero or few
bonds, to blue for many bonds. White curve corresponds to the location of the rough, developing interface.
Colored outline corresponds to selected pore shapes, colorized as (a) yellow at t̂ = 12, (b) green for t̂ = 40,
and (c) cyan for t̂ = 120. For V0 = 5kT , Pe = 0.05.

4.2 Volume fraction evolution

To quantify induction pore growth and other morphological changes presented qualita-
tively in Section 4.2, we zoom in to the volume fraction in the top 10% of the container,
the top 10% of the gel, and the bottom 10% of the gel, in Figure S7, where each row corre-
sponds to a temporal regime (induction, transition, fast sedimentation, and slow long-time
compaction). A comparison between the left and middle columns gives a clear indication
of whether the gel has begun to detach from the ceiling — if the curves are identical, the
gel is still completely attached to the ceiling; if the curves differ, it signals ongoing or com-
plete detachment. Volume-fraction, 〈φ〉(z), in the top 10% of the container and the gel are
shown in plots (a) and (b) respectively, where each curve is a snapshot in time between
t̂ = 0 and t̂ = 12. The curves are indistinguishable, confirming lateral pore growth but
no vertical migration of particles away from the ceiling. Instead, the average volume frac-
tion within the layers adjacent to the ceiling, and near the bottom (Figure S7c), remain
unchanged during the induction period.

The transition point and fast collapse can now be analyzed quantitatively. The volume
fraction plots in Figures S7d-e zoom in to the top 10% of the container and the gel during
this transition period. The curves corresponding to the same instant in time differ be-
tween (d) and (e) near the top 2% corresponding to the small macroscopic deformation;
therefore, the gel has begun to detach from the ceiling. At the peak sedimentation rate,
t̂ = 120, Figure S7f reveals densification at the bottom of the container, significantly larger
than the quiescent fluctuations associated with bi-continuous morphology, 〈φ〉(z) 
 25%.
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Figure S7: Zoomed-in layer-by-layer evolution of volume fraction in horizontal layers for a gel V0 = 5kT ,
forced at Pe = 0.05 over four temporal regimes of collapse.
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Overall, distinct spatial zones emerge during the transition regime but the decrease in vol-
ume fraction near the ceiling does not correspond to the emergence of a container-wide
supernatant; only a partial, free rough surface. This further suggests that the capillary-like
instability grows beyond the tipping point, as strands dissolve toward network junctions,
leading to eventual ceiling detachment.

The volume fraction during rapid sedimentation, 120 ≤ t̂ ≤ 1200, is plotted in Fig-
ures S7g-i (highlighted in green). Here, strands dissolve, causing pores to coalesce, colloid-
poor regions begin to form and grow near the top of the container. Correspondingly, vol-
ume fraction continues to decrease in Figure S7g but is not zero, providing macroscopic
evidence that detachment of the gel from the ceiling is still ongoing. In this regime, curves
in the left and middle columns significantly differ as the gel descends away from the ceil-
ing, and the top of the gel moves outside the view of the left column. Here, the middle
column reveals information about the roughness of the interface separating the gel and
the region above it; the top 10% of the gel has a significant portion with volume fraction
below 20% (Figure S7h), suggesting that the roughness of the interface is several particles
thick. Over time, the volume fraction curves become progressively flatter, as the interface
that bridges the gel and the supernatant becomes sharper and the exposed gel surface
smoothens.

Quantitative measurements of volume fraction support the visual observation of a container-
wide supernatant in Figure S7j where 〈φ〉 → 0 at t̂ > 1000. The interfacial region (Fig-
ure S7k) thins over time, with the 〈φ〉 
 20% region creeping slowly upward toward
z/hgel 
 94%, and the topmost layer at 〈φ〉 
 10% and slowly depleting. The middle
zone has disappeared. By this time, the sedimentation rate decays rapidly and collapse
ceases, indicating that when the gel can densify no further, collapse stops.

4.3 Contact number distribution over the entire gel
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Figure S8: Evolution of contact number distribution with time for a 5kT gel with particle weight Pe = 0.05
(solid lines) and undergoing quiescent coarsening (dashed lines).

To connect densification to contact number evolution, the contact number distribution,
P(Nc), is plotted for the entire gel over the duration of collapse in Figure S8. To compare
with quiescent coarsening, two sets of data are shown for several instants in time, one
with particle weight Pe = 0.05 (solid lines), alongside a gel coarsening under quiescent
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conditions, in the presence of container boundaries (dashed lines). For the two sets of
data, the gels have identical morphologies at t̂ = 0.

Initially, the most common contact number is Nc = 8, but the distribution of contact
number for the quiescent aging gel shifts to the right slightly over time, as particles mi-
grate to regions of higher contact number that reduce potential energy, in what has been
argued to be ongoing slow phase separation.3 A markedly more rapid shift takes place in
the collapsing gel (solid curves), with decreasing potential energy, suggesting more rapid
phase separation. Even at long times, t̂ ≥ 2000, with little to no macroscopic change in
bulk height or average volume fraction, an increase in the peak of P(Nc) suggests ongoing
restructuring of the gel.

The inset zooms in on the early-time behavior (0 ≤ t̂ ≤ 120), for quiescent (Pe = 0)
and loaded (Pe = 0.05) gels. Even though we saw growth in pore size, early-time changes
in P(Nc) appear to be difficult to distinguish, in agreement with 〈Nc〉(t), because the mobile
particles that drive coarsening belong to the population Nc ∈ [0,3], which constitute fewer
than 4% of all particles in the gel. A small change in population of these particles is
difficult to detect from P(Nc) curves, but one can tease out the changes relative to the
initial population size by normalizing the distribution at any time t̂ by its value at t̂ = 0,
examined in the main text.

4.4 Comparison of middle layer evolution to attractive glass
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Figure S9: Comparison of the attractive glass and the bottom layer of the gel (0.1≤ z/hgel ≤ 0.2) with bond
strength V0 = 5kT during collapse and after shutting off gravity. (a) Contact-number distribution, P(Nc), and
(b) partial pressure, normalized on nkT .

We compare the collapsing gel to an attractive glass prepared from a repulsive glass
of volume fraction φ = 0.62, where an attractive interparticle potential is imposed, as
would occur by adding depletant to a repulsive glass in an experiment.4 We compare
the contact number distribution in the bottom layer in the gel to that of the attractive glass
in Figure S9a. The two most important features of the data for the attractive glass are
a sharp peak at Nc = 9, and a vanishingly small population for Nc ≤ 4 that, combined,
confirm that it is devoid of pores of more than a particle size, and is devoid of surface
particles. In contrast, the bi-continuous gel initially exhibits a broad distribution where
extensive surface area permits a significant population size for Nc ≤ 4. During collapse
(0 ≤ t ≤ 6000), the distribution in the gel moves toward the right and is more sharply
peaked as pores shrink, and moves toward the distribution of the attractive glass, but
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never completely so, evidently prevented by re-arrest due to gravity. Remarkably, after
gravitational forcing is removed, Figure S9a reveals that a small change in contact number
distribution (in contrast to the barely discernible change in the bottom layer) after 2000
Brownian times, suggesting that further condensation is very slow, despite the negative
osmotic pressure. This suggests that glassy frustration is too deep (particle mobility is
low).

That is, it appears that the requirement for condensation is not only a negative osmotic
pressure, but also that the particles with negative osmotic pressure are mobile enough to
drive bond relaxation.

A better predictor of collapse is the partial pressure exerted by each population that can
reveal whether mobile, surface particles contribute to the negative osmotic pressure, in
which case jamming will prevent phase separation. The partial pressure of each Nc pop-
ulation (the per-particle pressure weighted by its population size), is normalized on nkT
and plotted as a function of Nc in Figure S9b. The primary features of the partial pressure
in the attractive glass are a zero pressure for Nc≤ 4, and sharply negative values for Nc≥ 7.
The single-phase domain with no surface area (the attractive glass) drives the former ef-
fect. The latter effect evidences deep glassy frustration, where bonds are pulled out of
their wells and held stretched by jammed morphology. In contrast, in the gel, the partial
pressure for the middle layer is initially negative for Nc ≤ 10 with a negative minimum at
Nc = 6; that is, sufficiently mobile populations have a negative osmotic pressure.

During the first three regimes of collapse (0≤ t̂ ≤ 1400) collapse, it is the negative partial
pressure of mobile particles in the middle layer that drives condensation, and densifica-
tion of the gel. Eventually, affine compaction pushes particles toward one another, and
the partial pressure becomes positive for Nc ≥ 7 by t̂ = 6000. By shutting off gravity, these
compressed bonds relax and partial pressure becomes once again negative for all popula-
tions. However, the partial pressure now exhibits a negative peak at Nc = 9 after removal
of gravity, differing from the initial gel, and revealing similarities to the attractive glass for
Nc ≥ 9, suggesting re-arrest of the gel.

4.5 Bond-length distribution

During collapse, the potential energy of the gel decreases suggesting that the bonds in
the gel relax toward the minimum, and eventually, osmotic pressure increases as bonds
undergo compression. Further evidence of bond relaxation and subsequent bond com-
pression are obtained by examining the bond-length distribution per particle. The number
of bonds per particle at bond length s, N(s) is computed, and the growth is tracked by tak-
ing the difference between N(s) and its initial value are plotted in Figure S10 for several
instants in time for the middle and bottom layers. The red shaded region mark compressed
bonds while the yellow shaded region marks stretched bonds.

The middle layer reveals minor fluctuations in bond distribution during the induction
period 0 ≤ t̂ ≤ 12. During the transition regime and into fast sedimentation, Nc increases,
and the resulting bond-length distribution increases near the minimum s = 0, as several
bonds relax during collapse. Eventually, t̂ ≥ 1000, when densification occurs and causes
affine compaction, the peak shifts to the left of s = 0 indicating that many compressed
bonds grow, resulting in an overall positive osmotic pressure. This bond compression,
although small, relaxes after gravity is turned off, allowing phase separation to progress.

The bottom layer is always undergoing affine displacements and the shift in bonds
toward compressed lengths is more evident by an increase in overall magnitude over the
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duration of collapse. During the induction period, no detectable growth in bonds occurs.
Subsequently, during the transition regime, bonds grow at all lengths, but the growth in
bonds at s < 0 is even more pronounced, suggesting that affine compaction results in bond
compression, creating more compressed bonds and depleting stretched bonds. Eventually
bonds of all lengths grow, resulting in the peak occurring at s < 0 and thereby, a positive
osmotic pressure that suppresses phase separation. Finally, When gravity is turned off,
the peak shifts toward the right, suggesting that compressed bonds relax, and a strongly
negative osmotic pressure can arise from the stretched bonds.

5 Osmotic pressure for a short-ranged interparticle potential
The effect of particles and their interactions on osmotic pressure has been defined me-
chanically as the particle contributions to the negative of the trace of the equilibrium stress
tensor,5–7

Π
nkT

=−1
3

III : 〈ΣΣΣ〉
nkT

= 1+
Π P

nkT
+ ..., (3)

where the first term on the right hand side is the ideal osmotic pressure and is always
positive: diffusion tends to expand system boundaries.6 The pair contribution Π P can raise
or lower osmotic pressure. A positive pair contribution to osmotic pressure also tends to
expand a system outward, while condensing systems display Π P < 0.3,6 Only the elastic
stress n〈xxxFFFP〉 matters in a freely draining system, where hard-sphere repulsion (entropic
exclusion) gives a positive osmotic pressure, and attractions give a negative contribution:

Π P

nkT
=
〈rrr ·FFF〉
3kT

, (4)

where rrr≡XXXi−XXX j is the separation between a pair of particles i and j at positions XXXi and XXX j
respectively, and FFF is the force derivable from the interparticle potential (cf Equation ??)
for that separation. The angle brackets denote a sum over all pairs of interactions, divided
by the number of particles.
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If a gas is sufficiently dilute it is assumed to be ideal, meaning that the only contributions
to pressure arise from the finite size and energy of individual particles. Pair interactions are
negligible, so effects such as attractions that would reduce kinetic energy, and therefore
pressure, can be neglected. If such a gas is multicomponent such that different species
have different kinetic energies we can simply sum their contributions as individuals. The
O(n2) in Equation 3 term in the virial expansion is irrelevant. Dilute colloidal dispersions
can be analyzed analogously.

But in a dense suspension, three or more particles can encounter one another simulta-
neously. Long-range interactions can produce hierarchical N-body couplings, contributing
to higher order terms in the virial expansion that may not be simply neglected. However,
if particle interactions are short-ranged, it is possible to approximate the interactions be-
tween several particles in a cluster as pairwise. In the case of attractions arising from a
depletion force, it must be determined whether the osmotic pressure gradient of depletant
for the formation of a new bond is weaker or stronger due to the presence of a prior bond.
The maximum attraction strength for a pairwise depletion interaction is given by:8,9

Vdep

kT
= n∞

b Voverlap = n∞
b

2
3

πa3Δ2(3+2Δ), (5)

where Vdep is the interaction potential, Voverlap is the excluded volume due to the overlap
of the interacting particles, n∞

b is the bulk depletant number density, a is size of the col-
loid, and Δ is the ratio of sizes of the depletant to colloid. We examine the formation of
subsequent bonds as the cluster grows. For a given depletant to colloid size ratio, the maxi-
mum attraction strength linearly depends on the volume of overlap and the bulk depletant
concentration. Therefore, in order to determine whether formation of one bond affects
the interaction strength of subsequently formed bonds, we will examine these separately
starting with the overlap volume.

In order to calculate the total overlap volume for a cluster of particles, one must cal-
culate the total volume excluded to the depletant in the intervening gaps between the
particles in the cluster. The total volume excluded in the cluster is given by the sum of
pairwise excluded volumes accounting for any overlap between overlaps (shared excluded
volumes), which we call overlap between overlaps. This over counting depends on the
steric hindrance due to the other colloids in the cluster. But due to hard sphere exclu-
sion, the volumes excluded to the depletants from each pair interaction within the cluster
cannot overlap if it results in the overlap of colloids. That is, steric hindrance from the
colloids prevents some over counting. If steric hindrance can prevent all over counting,
then the total volume excluded to the depleting in the intervening gaps is simply the sum
of pairwise excluded volumes. We determine possibility of such a scenario.

The geometric constraint such that over counting is sterically-hindered is when Δ ≤
Δcrit =

2√
3
− 1 
 0.15.10,11 Therefore, for the interaction potential used in our simulation

where Δ = 0.1, the colloids sufficiently hinder each other such that the overlap volume
in the cluster is the sum of overlap volumes of each pair in the cluster (see Figure S11
for an illustration). When Δ = 0.1 (Figure S11a), there is no overcounted volume and
therefore the total overlap volume is exactly the sum of pairwise overlaps. When Δ = 0.2
(Figure S11b)and larger than the critical value, some volume is overcounted when the
particles are at their closest approach. However, when the average coordination number
is high, bonds are often held out of their minima due to glassy frustration and neglecting
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Δ = 0.1 Δ = 0.2 Δ = 0.4

Δ =
size of depletant

size of polymer

Overlap volume
Overlap of overlaps 
(overcounted) volume

Figure S11: Excluded volume in green for various ratios of depletant-colloid sizes. Black circles indicate
the excluded volume of the hard particles, colored annuli represent the range of the depletion attraction
interaction. Regions shaded in green correspond to the overlap volume when two colloids are at the closest
approach, and the purple regions mark the overlap of regions shaded in green.

higher-body terms may be a valid approximation. When Δ = 0.4 (Figure S11c), overco-
munted volume is significant and a pairwise approximation of the osmotic pressure is not
expected to be valid.

For the colloidal gel examined in this study, the range of depletion attraction Δ = 0.1,
and the volume of overlap calculation is exactly the sum of all pairwise volume overlaps.
Thus, when the bulk concentration of depletant (and chemical potential) is assumed con-
stant, neglecting higher order terms in Equation 3 is valid.10,11 We now turn our attention
to the effective change in bulk concentration when the volume available to the depletant
increases due to a decrease in intervening gaps that drives depletion attraction. The bulk
density of depletant is given by:

n∞
b =

# depletants in container
Vf ree

, (6)

where Vf ree is the free volume available to the depletant in the container. If there are no
particle overlaps, the volume available to the depletant is given by:

Vf ree =V (1−φ(1+Δ)3), (7)

where V is the volume of the container, φ is the volume fraction of colloids. If bonds
are formed between many particles in the system, the available volume for the particles
increase by the total overlap volume formed by all bonds. Thus, the new free volume
available is V ′f ree. Since the total number of depletants in the container is fixed, the new
depletant bulk density n′∞b decreases, given by

n′∞b
n∞

b
=

Vf ree

V ′f ree
(8)

Calculation of an exact value of V ′f ree is not straightforward because it depends on the
instantaneous configurations of particles. In the limit that all bonds that form occur at
maximum overlap, we can obtain the additional free volume as the sum of free volume
per bond times the number of bonds in the container. This value must further be divided
by 2 to account for overcounting the bonds. The excess free volume, V excess is given by:

Vexcess =Voverlap
〈Nc〉×number of colloids

2
(9)
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Vexcess =Voverlap
〈Nc〉

2
× φV

4π
3 a3

(10)

Finally, V ′f ree =Vf ree +V excess.

n′∞b
n∞

b
=

1

1+
Vexcess

Vf ree

(11)

Vexcess

Vf ree
=

2
3πa3Δ2(3+2Δ) 〈Nc〉

2 φ
4π
3 a3[1−φ(1+Δ)3]

=
Δ2(3+2Δ)〈Nc〉φ
4[1−φ(1+Δ)3]

(12)

For typical values for the colloidal gel studied in this work, where φ = 0.2, 〈Nc〉 = 8,
Δ = 0.1, we get

n′∞b
n∞

b
= 0.983. (13)

The change in number density of depletant is less than 2%, which implies that the
change in the attraction potential due to particles on average forming clusters of 8 parti-
cles is less than 2%. In reality, the bond distances in a colloidal gel are on average held
out of equilibrium, and the actual increase in volume available to the depletant will be
even smaller, resulting in a smaller change in number density, and therefore even smaller
change in the attraction potential. Thus, for a colloid-polymer system with Δ = 0.1, the
pairwise depletion attraction potential is a valid approximation even when many-body
clusters form, and the resulting osmotic pressure is accurate to O(n2).
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