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1 Elastic lipid bilayer with one type of

curvature-inducing protein

In this section, we present a brief derivation of the generalized
shape equation based on local stress balance. This approach, de-
velopped in details in38,42,43, results in an equivalent model to
the one obtained by the variationnal consideration35,37,44. We
then express specialize the model to minimal surfaces, and pro-
pose a relationship between spontaneous curvature and protein
density. Finally we discuss the need for a multi-protein model.

1.1 Equilibrium model of elastic surfaces by local force bal-

ance

The equation of mechanical equilibrium of an elastic surface w
subject to a lateral pressure p can be written in the compact form

SSSa
;a + pn = 0 , (S1.1)

where SSSa are the stress vectors and n is the unit normal to the
local surface. Greek indices range over 1,2, and if repeated, are
summed over this range. Semicolon identifies covariant differen-
tiation with respect to the metric aab = aa · ab where aa = r,a
are the tangent vectors and r(q a ) is the parametrization of the
position field. The commas refer to partial derivatives with re-
spect to the surface coordinates q a . With these definitions, the
normal vector is given by n = (a1⇥a2)/ | a1⇥a2 |. In Eq. S1.1, the
differential operation represents the surface divergence defined
as SSSa

;a = (
p

a)�1(
p

aSSSa ),a where a = det(aab ). In surface theory,
a manifold is described the metric aab defined above, and the
curvature tensor given by bab = n · r,ab .

For an elastic membrane whose energy surface density per unit
mass depends on the metric and curvature only F(aab ,bab ;q a ),
the stress vectors involved in the local force balance (Eq. S1.1)
can be written as42

SSSa = Ta +S
a n . (S1.2)

Here the tangential stress vectors are

Ta = T
ba ab with T

ba = Sba +b
b
µ M

µa , (S1.3)

and the components of the normal stress vectors are

S
a =�M

ab
;b , (S1.4)

where b
b
a = a

bl
bla . The components of the stress vectors de-

pends on the energy density as42

Sab = r

 
∂F

∂aab
+

∂F

∂aba

!
and M

ab =
r
2

 
∂F

∂bab
+

∂F

∂bba

!
,

(S1.5)
where r the surface mass density of the membrane. The tan-
gential and normal local force balances can now be obtained by
introducing Eqs. S1.2, S1.3, and S1.4 into Eq. S1.1, resulting in

T
ba

;a �S
a

b
b
a = 0 and S

a
;a +T

ba
bba + p = 0 , (S1.6)

where we made use of the Gauss and Weingarten equations82

aa;b = bab n and n,a =�b
b
a ab respectively.

Practically, the free energy density is sometimes given as a func-
tion of the mean curvature H and Gaussian curvature K. These
are related to the metric and curvature by

H =
1
2

a
ab

bab , K =
1
2

eab el µ
bal bb µ , (S1.7)

where a
ab = (aab )

�1 is the dual metric, and eab is the permu-
tation tensor defined by e12 = �e21 = 1/

p
a, e11 = e22 = 0. Ac-

cording to the definitions S1.7, the free energy density per unit
mass can be re-written in terms of the mean and Gaussian curva-
ture F(H,K;q a ). Furthermore, lipid membranes are essentially
incompressible (see assumption 3 above). This leads us to intro-
duce a Lagrange multiplier g(q a ) to ensure that the local area
dilatation J = 1, or equivalently, to constraint the constant sur-
face density r of the membrane. Consequently we can define the
surface energy density of the membrane as follows

F(r,H,K;q a ) = F̄(H,K;q a )� g(q a )

r
, (S1.8)

and when introducing the surface energy per unit area
W (r,H,K;q a ) = rF̄(H,K;q a ), the components of the stress vec-
tors (Eqs. S1.5) can be written as42

Sab = (l +W )aab � (2HWH +2KWK)a
ab +WHb̃

ab (S1.9)

M
ab =

1
2

WHa
ab +WKb̃

ab (S1.10)

where l (q a ) = � [g(q a )+W (H,K;q a )], and b̃
ab = 2Ha

ab � b
ab

is the cofactor of the curvature. The subscripts H and K refer to
the partial derivative of the energy with respect to the indicated
variable. The Lagrange multiplier g has a mechanical interpre-
tation of surface pressure and is not a material property of the
surface38,43. l can be interpreted as the surface tension based on
comparisons with edge conditions on a flat surface38.

Finally, introducing Eqs. S1.9 and S1.10 into Eqs. S1.3 and
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S1.4, we can rewrite the normal and tangential force balances
(Eqs. S1.6) as

D
✓

1
2

WH

◆
+(WK);ab b̃

ab +WH(2H
2 �K)+2H(KWK �W )

= p+2lH , (S1.11)

and

�(g,a +WKK,a +WHH,a )a
ba =

✓
∂W

∂q a |exp +l,a

◆
a

ba = 0 ,

(S1.12)
where D(·) = (·);ab a

ab is the surface Laplacian (or Beltrami oper-
ator), and ∂ (·)/∂q a |exp is the explicit derivative with respect to
q a .

Eqs. S1.11 and S1.12 are the general shape equation and in-
compressibility condition for an elastic surface with free energy
per unit area W (r,H,K;q a ). In the following we specialize it to
the case of lipid membranes by specifying the form of the free
energy.

1.2 Elastic lipid bilayers with non-constant spontaneous

curvature

The most common model of lipid membranes is the Helfrich en-
ergy33. This can be extended to account for the entropic con-
tribution of membrane-bound proteins to the areal free-energy
functional such as

W (s ,H,K;q a ) = A(s)+ k(q a )[H �C(s)]2 + kG(q a )K , (S1.13)

Here A(s) is the contribution of the membrane-bound proteins to
the free energy and s is the surface density of proteins. k(q a ) and
kG(q a ) are the bending and Gaussian moduli respectively, consid-
ered to be surface coordinate dependent. C(s) is the spontaneous
(mean) curvature, which is determined by the local membrane
composition, say the surface density of a curvature-inducing pro-
tein s . We will propose later a possible relationship for C(s).
While it is certainly possible to propose explicit functions of A(s)

and C(s) on the protein density (see75 for discussion on A(s),
and45,77 for specific examples) we will for now retain their gen-
eral form.

The shape equation for lipid membrane with protein and space
dependent moduli is obtained by introducing the free energy den-
sity (S1.13) into Eq. (S1.11), resulting in

D [k(H �C)]+2HDkG � (kG);ab b
ab +2k(H �C)(2H

2 �K)

+2H(kGK �W (s ,H,K;q a )) = p+2lH . (S1.14)

The incompressibility for lipid membranes is obtained similarly,
introducing (S1.13) into the Eq. (S1.12)

—l =�Ws —s �—k(H �C)2 �—kGK , (S1.15)

where (·)s = ∂ (·)/∂s is the partial derivative with respect to s ,
and —(·) = (·),a a

ab is the surface gradient. One can recognize

Ws as the chemical potential of the membrane protein, and given
Eq. (S1.13), we have

Ws = As �2k(H �C)Cs . (S1.16)

Eqs. S1.14 and S1.15 describe the equilibrium configuration of
lipid membrane subject to heterogeneous spontaneous curvature
induced by proteins. An additional constraint related to the area
incompressibility of the membrane requires the lipid velocity field
(u = u

a aa +wn) to satisfy45

u
a
;a = 2Hw . (S1.17)

Although models for lipid flow within biological membranes
have been proposed38,43,46,75, such description is out of the scope
of this study. Provided a lipid velocity field satisfying Eq. S1.17,
and suitable boundary conditions, the system given by the cou-
pled equations S1.14 and S1.15 fully describes the equilibrium
configuration of a lipid membrane subject to a static distribution
of curvature-inducing proteins.

1.3 Static distribution of curvature-inducing protein on min-

imal surfaces

In this section, we specialize the system of Eqs. S1.14 and S1.15
to minimal surfaces, and examine the associated restrictions on
the Lagrange multiplier field l and velocity field u

a .

Before to proceed, it is useful to clarify what are the imposed
and the unknown quantities in our model. Traditionally, one
seeks to compute the shape of the membrane for a given distri-
bution of spontaneous curvature and boundary conditions. This
is often done by formulating the shape equation and incompress-
ibility condition within a certain parametrization. For instance,
within the Monge parametrization one would aim to compute the
height of the membrane h(x,y) with respect to a reference plane
at every point, while in axisymetric coordinates one would solve
for the distance to the axis of symmetry r(z). In our case however,
we consider the inverse problem, that is to say, we seek to compute
the distribution of spontaneous curvature for a given shape of the
membrane and boundary conditions. Independently of the ap-
proach, the spontaneous curvature C(s) is interpreted physically
as resulting form the distribution of curvature-inducing proteins
(or lipids) of areal density s on the membrane. We illustrate our
‘inverse problem’ approach by choosing minimal surfaces as the
imposed membrane shape. We further demonstrate the applica-
bility of our model by solving on catenoid-like necks, which are
minimal surfaces that have been extensively used as models for
the study of fusion/fission intermediate.

Minimal surfaces are characterized by the property that the
mean curvature vanishes pointwise (H = 0 everywhere on the
membrane). Furthermore, as a first approximation, we consider
membranes with isotropic mechanical properties (k and kG are
constants). Accordingly, in the absence of transmembrane pres-
sure, the shape equation S1.14 reduces to a variable-coefficient
Helmhotz equation for the spontaneous curvature

DC(s)�2KC(s) = 0 . (S1.18)
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Fig. S1 Schematic representation of curvature-inducing proteins with conical shape on a lipid membrane. (a) Proteins with positive angle j induce

positive spontaneous curvature. (b) Proteins with a negative angle j induce negative spontaneous curvature. (c) The value of the spontaneous

curvature is the a combination of the local protein composition.

Both the energetic contribution of the proteins A(s) and the local
Lagrange multiplier l are now absent from the shape equation
S1.18, therefore uncoupling them from the incompressibility con-
dition. Yet, any solution of Eq. S1.18 is restricted to the condition
that the balance equation S1.15 with S1.16 is satisfied. For mini-
mal surfaces, these later equations reduce to

—l =� [A(s)s +2kC(s)C(s)s ]—s . (S1.19)

Using the identities —A(s) = A(s)s —s and —
⇥
C(s)2⇤ =

2C(s)C(s)s —s , this can be simplified to

—l =�—[A(s)+ kC(s)2] , (S1.20)

from which we get l as a function of A(s) and C(s) apart from a
constant l0, such that

l =�[A(s)+ kC(s)2]+l0 . (S1.21)

Equation S1.21 is the admissibility condition for the Lagrange
multiplier field l .

1.4 Relationship between protein density and spontaneous

curvature

Here we propose an explicit relationship between the sponta-
neous curvature and the distribution of curvature-inducing pro-
teins.

One protein model Let us consider a pointwise protein surface
density on the membrane s(q a ). The goal of this section is to pro-
pose an expression for C(s). Note that we consider proteins only
for ease of visualization, but our model can be as easily applied
to spontaneous curvature-inducing lipids or nano-objects instead
of proteins.

A convenient way to think about the relationship between
spontaneous curvature and protein density, is in terms of the in-
sertion of a conical shape transmembrane protein with its axis of
revolution directed along the surface normal (see Fig. S1). Fol-
lowing this representation, the point value of C(s) will depend
on (i) the angle of the cone (j), (ii) the lipid-protein specific

moietic interactions (k), and (iii) the local density of protein (s).
It should be noted that in this model, we neglect any thickness
variation or lipid tilt resulting from the insertion of the proteins
in the lipid bilayer. Although experimental observations seem to
support point (iii)10,19, to our knowledge, no explicit relation be-
tween C and s has been reported based on experimental data.
Consequently, we consider a simple expression for the sponta-
neous curvature of the form45

C(s) = kjs . (S1.22)

This form ensures that the induced spontaneous curvature van-
ishes in the case of cylindrical embedded proteins (j = 0), and
assumes that a same type of conical protein inserted from one or
the other lipid leaflet will have j of opposite sign, and therefore
produce a spontaneous curvature of opposite sign. It should be
noted that this expression does not account for protein-protein
interaction, and therefore should be considered only in a dilute
regime, outside of any saturation effect.

A limitation of the model in its current form is that the spon-
taneous curvature is the result of only one type of protein. As
a consequence, C(s) can only be either positive everywhere, or
negative everywhere, but cannot change sign from one point of
the membrane to the other. This is in contradiction with our re-
sults on the determination of spontaneous curvature on catenoid-
shaped necks. The minimal set of proteins to allow the sponta-
neous curvature to have positive and negative values is two, and
this case is considered next.

Two proteins model We propose that the local protein density
results from a minimal set of two proteins s = {s1,s2}. All the
results below can be easily generalized to a set of N proteins. As
a first approximation, we assume that the spontaneous curvature
is a linear combination of the spontaneous curvatures induced
by each individual proteins C(s1,s2) = C1(s1) +C2(s2). Simi-
larly to the one protein model (Eq. S1.22), we assume a linear
relationship between spontaneous curvature and protein density,
such that

Ci(si) = (kiji)si , (S1.23)
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Fig. S2 The switch-like behavior in spontaneous curvature observed for catenoids can be conceptually understood with a simple oscillator. The

solution of a simple harmonic oscillator (Eq. S2.3) with C1 =C0 depends on the oscillator period T =�p/K. Decreasing values of the oscillator period

correspond to increasing values of K, and therefore decreasing values of the neck radius. C diverges for T
⇤/L = 2/(1+2n) (marked by purple

diamonds), and changes mode for T
⇤/L = 1/(1+n) (indicated by green triangles).

where ki is a positive constant representing the lipid/protein
specific hydorphobic interactions, and ji is the angle made by
the meridian of the conic protein with the surface normal (see
Fig. S1). Note that in order for the total spontaneous curvature
C(s1,s2) to have either positive or negative values, the angles of
the two proteins needs to have opposite signs (j1j2 < 0).

With these forms in effect, Eqs. S1.18 and S1.21 can be ex-
pressed directly as a function of the protein densities. The shape
equation thus reduces to

D(k1j1s1 +k2j2s2)�2K(k1j1s1 +k2j2s2) = 0 , (S1.24)

subject to the admissibility condition for l

l =�[A(s1,s2)+ k(k1j1s1 +k2j2s2)
2]+l0 . (S1.25)

In the case where the two proteins have the same physical prop-
erties, but are inserted on either side of the membrane (k1 = k2 =

k, and j1 =�j2 = j, we can define the effective protein density
s̃ = s1 �s2 which satisfies

Ds̃ �2Ks̃ = 0 , (S1.26)

and
l =�[A(s1,s2)+ k(kjs̃)2]+l0 . (S1.27)

2 Simple Oscillator Analogy

In order to study the behavior of Eq. S1.18 in simplified condi-
tions, let us consider the case where K is a constant. In one-
dimension, Eq. S1.18 can be written as

d
2
C

ds2 =�w2
C , (S2.1)

where w2 =�2K is a positive constant, and s2 [�L/2;L/2]. This is
the equation of a simple harmonic oscillator of period T = 2p/w =

p
p

�2/K, which has for general solution

C(s) = Acos(ws)+Bsin(ws) , (S2.2)

A and B being constants determined by the boundary conditions.
With boundary conditions C(�L/2) =C0 and C(L/2) =C1 the so-
lution is

C(s) =
C0 +C1

2cos(wL/2)
cos(ws)� C0 �C1

2sin(wL/2)
sin(ws) . (S2.3)
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From Eq. S2.3 we have that the value of C at the neck (s = 0) is

C(0) =
C0 +C1

2cos(wL/2)
, (S2.4)

which diverges for w⇤ = (p +2np)/L, where n 2N. Or in terms of
the oscillator period, the solution diverges for

T
⇤ =

2L

1+2n
. (S2.5)

Eq. S2.3 is plotted in Fig. S2 for various periods T . The value of C

within the interval [�L/2;L/2] is positive for T > T
⇤(n = 1), and

negative below. To decrease the oscillator period is conceptually
equivalent to increase the absolute value of K, or to decrease the
neck radius of the catenoid. For a catenoid, the Gaussian curva-
ture at the neck is K(s = 0) = �1/r

2
n. Taking w2 = 2/r

2
n, the posi-

tive value of the neck radius for which the spontaneous curvature
diverges is

r
⇤
n =

p
2L

p(1+2n)
. (S2.6)

For n = 0, we have r
⇤
n/L ' 0.45. From Eq. S2.6, it is clear that the

value of the critical neck radius is independent of the boundary
conditions.

3 Direct solution of the shape equation

In this section we verify that the solution for the spontaneous cur-
vature obtained on catenoid-shaped neck does produce catenoid
by following the “direct” approach. The shape equation for an
isotropic membrane is

D [k(H �C)]+2k(H �C)(H2 �K +HC) = p+2H(l +A) , (S3.1)

with the incompressibility condition that can be written as

—(l +A) = 2k(H �C)Cs —s . (S3.2)

3.1 Axisymmetric parametrization

We write the equilibrium equations of the membrane in axisym-
metric coordinates. We therefore define a surface of revolution
that is described in the coordinate basis (er,eq ,k) by

r = r(s)er + z(s)k , (S3.3)

where s is the arclength along the curve, r(s) is the radius to the
axis of revolution, and z(s) is the elevation from a reference plane.
Since r(s)2 + z(s)2 = 1, it is convenient to define the angle y such
that

as = cosyer + sinyk and n =�sinyer + cosyk , (S3.4)

are the tangent and normal vectors to the curve respectively. It
follows that the surface can be parametrized as

r
0(s) = cosy , (S3.5)

z
0(s) = siny , (S3.6)

where (·)0 = d(·)/ds. We can now write the tangential and trans-
verse principal curvatures as

k1 = y 0 and k2 = r
�1 siny , (S3.7)

respectively, and the mean and Gaussian curvatures as

H =
k1 +k2

2
=

y 0+ r
�1 siny
2

(S3.8)

K = k1k2 = H
2 � (H � r

�1 siny)2 , (S3.9)

respectively. Eq. S3.8 provides the differential equation for y,
which can be rearranged as

ry 0 = 2rH � siny . (S3.10)

Eq. S3.1 is a second order partial differential equation. In order
to simplify its resolution, we define L as

L = r [k(H �C)]0 , (S3.11)

allowing to write the shape equation (Eq. S3.1) as a first order
differential equation for the mean curvature

H
0 = r

�1L+C
0 . (S3.12)

Using the relation —(H �C) = r
�1[(H �C)0]0 = r

�1(rL)0, into
Eq. S3.1, we get a differential equation for L

r
�1L0 =

p

k
+2H


(H �C)2 +

l +A

k

�

�2[H �C]
h
H

2 +(H � r
�1 siny)2

i
. (S3.13)

Finally, Eq. S3.2 becomes

[l +A]0 = 2k(H �C)C0 . (S3.14)

The full system is composed of Eqs. S3.5, S3.6, S3.10, S3.12,
S3.13, and S3.14, and must be completed with 6 boundary con-
ditions. For a domain defined as s 2 [0,L/2], we set

r(0) = rn ,

z(0) = 0 ,

y(0) = p/2 ,

r(L/2) = rn cosh[z(L/2)/rn] ,

z(L/2) = rnasinh[L/2/rn] ,

y(L/2) = asin[1/
p

1+(L/2/rn)2] ,

(S3.15)

where we used Eq. S3.9 to determine y(L/2).

3.2 Dimensionless system

Based on the length scales introduced in the main text, L and C0,
we define the axisymmetric dimensionless variables as

s̄ = s/L , r̄ = r/L , z̄ = z/L , H̄ = HL , C̄ =C/C0 , l̄ = LL ,

l̄ = (l +A)L2/k , p̄ = pL
3/k , K̄ = KL

2 , k̄G = kG/k .
(S3.16)
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Fig. S3 Direct solution of the shape equation subject to the distribution of spontaneous curvature from Fig. 3(c). Symbols are exact values for a

catenoid, solid lines are computation results. (a) Shape of the neck, and (b) Gaussian curvature.

The dimensionless system then becomes

r̄
0 = cosy , z̄

0 = siny , r̄y 0 = 2r̄H̄ � siny ,

H̄
0 = r̄

�1
l̄ +C̄

0 , l̄ 0 = 2(H̄ �C̄)C̄0 ,

and r̄
�1

l̄
0 = p̄+2H̄

⇥
(H̄ �C̄)2 + l̄

⇤

�2(H̄ �C̄)
⇥
H̄

2 +(H̄ � r̄
�1 siny)2⇤ ,

(S3.17)

with the boundary conditions

r̄(0) = r̄n ,

z̄(0) = 0 ,

y(0) = p/2 ,

r̄(0.5) = r̄n cosh[z̄(0.5)/r̄n] ,

z̄(0.5) = r̄nasinh[0.5/r̄n] ,

y(0.5) = asin[1/
p

1+(0.5/r̄n)2] ,

(S3.18)

where r̄n = rn/L.

3.3 Numerical implementation and results

With the aim to verify that the distribution of spontaneous curva-
ture obtained through the inverse problem produces a catenoid-
shaped membrane, we chose a different numerical method for the

direct computation. Therefore, we solved the system with a cus-
tom made code in Matlab R� (Mathworks, Natick, MA), utilizing
the built-in boundary value problem solver bvp4c. The values for
the distribution of spontaneous curvature was extracted from the
data shown in Fig. 3(c) using a spline interpolation to obtain the
value of C between the initial mesh-points. Then the system of
Eqs. S3.17 with the boundary conditions S3.18 was solved on an
initial mesh of 1,000 equidistant points. To obtain convergence,
the solver was allowed to increase the number of mesh-points up
to 100,000. The relative and absolute tolerances were set to 10�4

and 10�7 respectively.

Solution for the direct computations of the shape equation are
presented in Fig. S3. Both the shape and the Gaussian curvature
fit closely the ones of a perfect catenoid. This results confirm
that the distribution of spontaneous curvature obtained through
the inverse approach minimizes the energy of a catenoid-shaped
structure subject to the the above boundary conditions.
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