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1. Numerical implementation of the theory 

 In order to solve the molecular theory, the expressions for  ( )sol r , ( , )P r  and  ( )c r  (eqs. 10, 11 and 13 in the 

main text) are substituted into the packing constraint (eq. 5 in the main text). The resulting equation is discretized in 

the r coordinate in layers of thickness δ, with δ = 0.2 nm. The layer k is defined as the planar region between r = (k – 

1)δ and r = kδ (for a planar lamella) or the cylindrical or spherical shell enclosed by two cylinders or spheres of radii (k 

– 1)δ and kδ (for cylindrical fibers or spherical micelles, respectively). The size of the calculation box is given by M, 

which is the maximum value of k.  

The discretized form of the packing constraint (eq. 5 in the main text) becomes: 

   ( ) ( ) 1 0sol i
i

k k      (0) 

where  ( )i k  is given by: 
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In eq. (0), G(k) is the volume element in layer k and hence for spherical micelles, G(k) = 4(k-½)2 δ3; for cylindrical fibers, 

G(k) = 2(k-½)δ2 L (where L is the length of the fiber) and for planar lamellas, G(k) = 2δA (where A is the area of the 

lamella). In this equation,  ( ; , )in k k is the number of segments that a chain with its center of mass in layer k’ has in 

layer k when it is in conformation α. 

The discretized probability density function, ( , )P k , is given by: 
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where the coefficients ( ', '')ijg k k  are the discretized versions of the functions ( ', '')ijg r r  and depend on the symmetry 

of the system (note that the factor G(r’’) in eq. 12 in the main text is adsorbed into ( ', '')ijg k k ). The term 

   ( , ) ( )ij ij jg k k n k is therefore the effective attraction energy between a segment of type i in layer k’ and all segments 

of type j in layer k’’. 

In this work, we model the effective attraction potential between two segments separated by a distance d as: 
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where a is the segment length and dcut-off is a cut-off distance for the potential (we used 2.5 in this work). Note that 

the potential is zero for d < a because the minimum center-to-center distance between two segments is a.  

We obtain the coefficients ( ', '')ijg k k  by integration of the potential function in eq. (0) in the proper symmetry. For 

planar lamellas, the coefficients are: 
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For cylindrical fibers, the coefficients are given by: 
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Finally, for spherical micelles, the coefficients become: 
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2. Size of the calculation box 

In our choice of coordinates, the origin (r = 0) corresponds to the center of the micelle, the axis of the fiber or 

the central plane of the lamella. The size of the calculation box is given by the cut-off distance max
CMr , which is the 

maximum allowed distance between the center of mass of the amphiphile and the center of the aggregates. It is 

important to ensure that the structural and thermodynamic results of the calculation are the converged with respect 

to the choice of this parameter.  For example in Figure S1, we show a condition where the chemical potential of the 

amphiphile converges with the size of the calculation box. We observed that convergence can be usually achieved 

when the number density of the amphiphiles close to the cut-off position is much lower than the number density of 

amphiphiles within the aggregate, because, in this condition, increasing the size of the calculation box does not alter 

the density profiles in the system. This condition is in general fulfilled when well-defined aggregates are formed, for 

example, Figure S2a shows results for a condition where the number density of the chains drops to almost zero near 

the end of the box and structural and thermodynamic convergence of the results is achieved with respect to the size 

of the box. On the other hand, for amphiphiles that are highly soluble (e.g. molecules containing long head blocks), 

there is a large density of amphiphiles close to max
CMr  and thus we fail to converge the size of the calculation box (for 

example, for the conditions of Figure S2b) 

 



S4 
 

 

Figure S1. The chemical potential of an amphiphile molecule as a function of max
CMr , which is the maximum allowed 

distance between the center of mass of the amphiphile and the center of the aggregates.  Calculation parameters: 

lamellar aggregate; 7:0:8 tail:linker:head architecture; εtail = 3.0 kBT. 
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Figure S2. Volume fraction, φi of tail and head segments and number density of chains (ρc. in units of chainsnm-3) as 

a function of the distance to the center of the aggregate, r. Gray dashed lines indicate the maximum r at which the 

center of mass of the amphiphiles is allowed to be, max
CMr . Plot (a) shows a typical case where the structure is well 

converged and hence the number density of amphiphiles (red line in the lower panel) at max
CMr is close to zero. Plot (b) 

shows a case where the structure is not well converged and hence the number density of amphiphiles at max
CMr  is large. 

Our theory cannot make accurate predictions for the later cases. Calculation parameters: (a) micelar aggregate; 7:0:8 

tail:linker:head architecture ; εtail = 3.0 kBT. (b) lamellar aggregate; 4:0:11 tail:linker:head architecture ; εtail = 4.0 kBT. 
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3. Molecular model 

 

Figure S3. Schematic representation of the structure of a model surfactant. Blue, red and yellow beads represent tail, 

linker and head segments, respectively.  

 In this work, we are interested in studying the morphology behavior of triblock surfactants, which are linear 

chains formed by three blocks, each one with a different type of segment. Figure S3 shows a schematic diagram of the 

structure of a model surfactant. Blue, red and yellow beads represent tail, linker and head segments forming the 

hydrophilic terminal block, respectively. We use the same segment volume for the three types of segments, vi = 0.113 

nm3, while the solvent molecular volume was set to that of water, vsol = 0.03 nm3.  For simplicity, in this work we only 

consider linker-linker and tail-tail attractive interactions. Note that these are effective interactions, i.e. they model the 

difference between segment-segment and segment-solvent attractions. In other words, only two interaction 

parameters have to be set, 
tail

 and 
linker

. Head segments do not effectively interact with each other, which means they 

are in a good solvent. The total number of segments forming the chain is fixed to 15.  

 The possible conformations of the chains are sampled with a representative set of 105 self-avoiding 

conformations for each position of the center of mass, which are randomly generated using the Rotational Isomeric 

State (RIS) model.1,2 In the model, the length of each segment is fixed (we used 0.5 nm), as well as the angle between 

two consecutive segments (136). Only three possible values of the dihedral torsion angle defined by four consecutive 

segments are allowed. These values are 0 (trans state), 120 and 240 (gauche states). A sequence of torsion-angles 

states defines a conformation. 

4. Effect of the Size of the Set of Conformations 

In order to check if 105 conformations (for each position of the center of mass of the amphiphiles) are sufficient 

to ensure that the set of conformations is representative, we repeated the calculations shown in Figure 1 in the main 

text using 4105 conformations, see Figure S4. The coloured solid lines are the same curves shown in the main text and 

were calculated using 105 RIS conformations, while the black dashed lines were calculated using the enlarged set of 

4105 RIS conformations. In the plot, the three curves calculated with 4.105 conformations were shifted by exactly the 
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same quantity, 1.39 kBT. We conclude that enlarging the set of conformations shifts the chemical potential by a fixed 

quantity for all the cases. Since we are interested in differences of chemical potentials (and not their absolute values), 

all results presented in this work are converged with respect to the size of the set of conformations.   

The number of conformations which guarantees representativeness strongly depends on the length of the 

chain. In this work we model short triblock amphiphiles represented by 15 segments, and 105 conformations were 

enough. In previous works which used the RIS method to model longer molecules, a larger set of conformations was 

needed, for instance, In reference 3 a set of 5105 RIS conformations was used for grafted polyelectrolytes with a chain 

length of 50 segments/chain. 

  

 

Figure S4. Chemical potential of an amphiphile molecule, μ0
c , within different types of supramolecular self-assembled 

structures: planar lamellas (b-i), cylindrical fibers (b-ii) and spherical micelles (b-iii) as a function of the total number 

of chains per micelle, the number of chains per unit length of fiber or the number of chains per unit area of lamella. In 

this calculation, the molecules have five tail segments, five linker segments and five head segments (5:5:5 

architecture). For all cases, εtail = εlinker = 3 kBT/molecule. Coloured solid curves were calculated using a set of 105 

conformations and black dashed curves were calculated using a set of 4105 conformations.  

4. Calculation of the radius of gyration 

 We describe in this section the strategy to calculate the radius of gyration of each block k for a given molecule 

in dilute solution, Rg
k. First we calculate, for each conformation α, the energy associated with intramolecular 

interactions, U(α). Then, we calculate the radius of gyration of each block k, Rg
k(α), for each conformation α. Finally, 

we average the radii of gyration of all conformations for each block, weighting each conformation by the Boltzmann 

factor associated with the total internal energy of the chain U(α). Note that we explicitly consider intramolecular 
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attractions between segment beads instead of treating interactions through a mean-field approximation because we 

are calculating the radii of gyration for isolated chains in solution.  

The energy associated with intramolecular interactions is given by the sum of the pairwise attractions, given 

by: 
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where εij is the interaction parameter between segments i and j and ri is the position of the segment i in real space. 

The sum is done over all the segments that form the chain. Note that repulsions are accounted for by the fact that all 

conformations are self-avoiding. 

By definition, the radius of gyration of the block k for a chain in conformation α, Rg
k(α), is given by: 
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where Nk is the number of segments forming the block k and the sum is done only over segments that form the block 

k.  

Finally, the average radius of gyration of the block k is given by: 
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5. Extrapolation to long amphiphiles 
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Figure S5. Morphology diagram as a function of the total number of segments, ntotal, and the fraction of segments in 

the tail block for a fixed fraction of segments in the linker block of 4/15. Calculation parameters: εlinker = εtail
 = 3 kBT. The 

calculations using ntotal=30 were performed with 5105 RIS conformations for each position of the center of mass. 

 

 Figure S5 shows the morphology diagram for ntotal = 15 (lower row) or 30 (upper row) as a function of the 

fraction of segments in the tail block. The number of segments in the linker block was 4 for ntotal = 15 and 8 for ntotal = 

30 (i.e. in both cases the fraction of segments in the linker block was 4/15). Increasing the length of the chain stabilizes 

the lamella, but the order of the transition (M → F → L) and widths of the regions of stability for each morphology are 

similar for both values of ntotal. Therefore, Figure S5 suggests that the trends observed for short amphiphiles can be 

qualitatively extrapolated to longer neutral triblock molecules. 

 

6. List of symbols used in the molecular theory 

Symbol Definition 

α Label the amphiphile conformation (spatial distribution of chain segments). 

β Inverse temperature, (kBT)-1. 

δ Discretization step, we used δ = 0.2 nm. 

εij Van der Waals parameter for the attractive interaction between segments of types i and j. 

εlinker/tail Van der Waals parameter for the attractive interaction between linker/tail segments. 

 Lagrange multiplier associated with the restriction on the integral of the number density of chains. It is 

equal to  o
c . 
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λ(r) Multiplied by c(r)G(r) gives the Lagrange multiplier associated with the normalization of P(,r) at r. 

 o
c  Standard chemical potential of a chain within an isolated aggregate fixed on the space. 

π(r) Position-dependent osmotic pressure. Multiplied by G(r) gives the Lagrange multiplier associated with 

the packing constraint.  

ρi(r) Number density of species i at position r. (i = sol for solvent or c for chains)  

φi(r) Volume fraction of i at position r. (i= tail, head or linker for each type of segment; sol for solvent) 

A Area of the lamella. 

F Total free energy of an aggregate of Nc amphiphiles. 

gij(r,r’) Function that accounts for the geometric dependence of the interaction between segments of types i and 

j. 

G(r)dr Volume element at a distance r from the center of the micelle, the axis of the cylindrical fiber or the central 

plane of the planar lamella. 

kB Boltzmann‘s constant. 

L Length of the fiber. 

ni(r;α,r’)dr Number of segments of type i that a chain in conformation α at position r’ has in the spherical, cylindrical 

or planar region between r and r + dr. 

ni(r) Average number density of segments of type i at position r. 

Ni(r)dr Number of segments of type i between r and dr. 

Nc Total number of amphiphiles within an aggregate. 

P(α,r) Probability of having a chain in conformation α when its center of mass is at position r. 

q(r) Single-chain partition function at position r 

T Temperature. 

U(α) Energy associated with intramolecular interactions of a chain in conformation α. 

vi Volume of a segment of type i or a solvent molecule (i= tail, head or linker for each type of segement; sol 

for solvent) 
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