Melatonin-Directed Micellization: A Case for Tryptophan Metabolites and their Classical Bioisosteres as Templates for the Self-Assembly of Bipyridinium-Based Supramolecular Amphiphiles in Water

Zhenzhen Wang¹, Hui Cui^{2,a}, Zhimin Sun¹, Loïc M. Roch^{1,3,b}, Amanda N. Goldner^{2,c}, Hany F.

Nour¹, Andrew C.-H. Sue¹, Kim K. Baldridge¹ and Mark A. Olson^{1,2}*

¹Health Sciences Platform, Blding 24, Tianjin University, Tianjin 300072 China

²College of Science and Engineering, Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, Texas 78412 USA

³Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

^a Present address: Department of Chemistry, University of Texas San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

^b Present address: Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA

^cPresent address: Green Center for Systems Biology, University of Texas Southwestern Medical Center, 6001 Forest Park Blvd, Dallas, TX 75390, USA

Electronic Supporting Information

Additional Spectroscopic Characterization

Figure S1: ¹H NMR spectrum of 1.4Br in D₂O at 298 K (300 MHz)

Figure S2: ¹³C NMR spectrum of 1.4Br in D₂O at 298 K (300 MHz)

Figure S3: ¹³C NMR spectrum of 1.4Br in D₂O at 298 K (300 MHz)

Figure S4: Diffusion ordered spectrum (400 MHz, D2O, 298 K) of a $1 \times 10-2$ M solution of 1.4Br with no added template

Figure S5: Stacked linear sweep voltammograms measured at 100 mV/s of 5×10^{-3} M and 2.5×10^{-2} M solutions of melatonin (red) and L-tryptophan (black) respectively in H₂O with 3×10^{-2} M NaBr as supporting electrolyte.

Figure S6: Example UV/Vis spectra obtained during a titration of 1.4Br with π -electron donors melatonin (a) and L-tryptophan (c). Example plots of the non-linear regression fits (b and d) to data obtained from the titration shown in (a) and (c) for a 1:1 host-guest complex.

Table 1S: Binding Constant Data Calculated from Non-Linear Regression Fits of the Data Obtained from UV/Vis Titration Experiments Between 1.4Br and Melatonin and L-Tryptophan Using a 1:1 Host-Guest Binding Model

	<i>K</i> _a for	Covariance	RMS of	<i>K</i> _a for L-	Covariance	RMS of
	Melatonin	of Fit	Regression	Tryptophan	of Fit	Regression
	(M^{-1})			(M^{-1})		
	154.47	5.9171E-3	4.7858E-3	65.65	3.0368e-2	6.5221e-3
	12366	1.3623E-2	7.0875E-3	83.51	1.3242E-2	4.1951E-3
	213.16	3.4508E-3	3.2037E-3	78.60	1.9327E-2	6.3391E-3
Mean	166.43			75.92		
Stdev	43			9.23		

Figure S7: Hydrodynamic diameter ($D_{\rm H}$) distributions measured for a 1×10^{-2} M aqueous solution of 1·4Br (a) with 1 equivalent of L-tryptophan (b) and with 1 equivalent of melatonin (c) added using dynamic light scattering at 298 K.