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I. Dissipative Particle Dynamics method

The dissipative particle dynamics (DPD) simulations technique is a version of coarse-grained molecular dynamics adapted to
polymers and mapped onto the classical lattice Flory-Huggins theory (see Refs. 30–33 in the main text). In this method, polymer
chains are represented in terms of the bead-and-spring model, with particles interacting with a conservative force (repulsion), a
dissipative force (friction), and a random force (heat generator). A soft repulsive potential enhances the stability of the numerical
scheme for integrating the equations of motion and makes it possible to access large time and spatial scales when complex
polymeric structures are studied.

In this work, simulations were performed using the DPD-VV integration scheme (see Besold et al,Phys. Rev. E, 2000,
62, R7611), that implements the modified velocity-Verlet algorithm (see Allen and Tildesley,Computer Simulation of Liquids,
Clarendon Press, Oxford, 1987) for solving Newton’s equations of motion for interacting particles

dr i

dt
= vi , mi

dvi

dt
= Fi . (1)

Here r i , vi , andmi denote the radius vector, velocity, and mass of thei-th particle. The forceFi acting on it is a sum of
pairwise additive contributions of conservative, dissipative and random forces,

Fi = ∑
i 6= j

(FC
i j +FD

i j +FR
i j ), (2)

where the summation is performed over all other particles within a certain cutoff radiusrc. We assume that all quantities in Eqs.
(1) and (2) are dimensionless, and for simplicity we set allmi andrc to unity.

The conservative forceFC
i j includes a soft core repulsion forcefnb

i j between non-bonded particles and a bond elasticity force

fb
i j in bead-spring polymer chains

FC
i j = fnb

i j + fb
i j , (3)

fnb
i j =

{
ai j (1− ri j )r̄ i j ri j < 1

0 ri j ≥ 1,
(4)

fb
i j = −Ki j (ri j − li j )r̄ i j , (5)

wherer i j = r ir j , ri j = |r i j |, r̄ i j = r i j /ri j , ai j is a maximum repulsion between particlesi andj is attained atr i = r j ; Ki j is a
bond spring constant,li j is the equilibrium bond spring length (Ki j andli j are non-zeros only for the bonded pairs of particles).
The dissipative forceFD

i j (friction) and the random forceFR
i j are defined as follows:

FD
i j = −
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2 (vi j ∙ r̄ i j )r̄ i j , (6)

FR
i j = σω(ri j )

ζ
√

δt
r̄ i j , ω(r) =

{
(1− r) r < 1

0 r ≥ 1,
, (7)

whereσ is the amplitude of noise,kB is the Boltzmann constant,T is the system temperature,vi j = vi − v j , ζ is a normally
distributed random variable with zero mean and unit variance chosen independently for each pair of particles, andδt is the time
step. For simplicity, we assume thatkBT = 1 and introduce a dimensionless time unit as

τ = rc

√
m

kBT
= 1. (8)

The Groot-Warren thermostat is defined by Eqs. (6) and (7). The random and the dissipative forces serve as a heat source
and a heat sink, respectively, preserving the momentum for each pair of the interacting particles. Following Ref. 30 in the
main text, we chose the noise parameterσ and the reduced particle densityρ0 both equal to 3 as that provides an optimal balance
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between fast thermal relaxation and stability of the equilibrium state. In the same paper it was shown that forρ0 = 3 the repulsion
parameter for dissimilar particles is related to the Flory-Huggins interaction parameterχ:

ai j = χ/0.306+25, i 6= j. (9)

The time step for integrating Eq. (1)was set toδt = 0.004, which is 10 times smaller than the commonly used value. This
was done to enhance the stability of the numerical scheme at the elevated values of repulsion and bond stretch strengthes used in
our work. The periodic boundary conditions were used in all three directions.

II. Controlling phantom behavior of the subnetworks

The soft nature of the potential of the conservative interaction between particles is one of the distinctive features of the DPD
method that helps the system to reach the state of equilibrium faster. At the same time, the soft potential has a limited amplitude
of repulsive force, and thus the particles can overlap significantly. In the case of polymer systems, it leads to the possibility
for the chains to penetrate through each other, which is usually called “phantom behavior”. For interpenetrating networks, the
phantom behavior of the chains annihilates the effect of topological entanglements between the subnetworks, which would result
in physically incorrect properties. Therefore, the interaction parameters were chosen in a way that allows the researchers to avoid
the phantom behavior.

We performed test simulations on a medium-sized IPN microgel (nsub= 20,N ≈ 4∙104, equilibration for 107 DPD steps) and
checked the results for the presence of topology violations. To this end, we analyzed the instantaneous structures every 106 DPD
steps. First, the full set of the mesh cycles in the structure was determined for both subnetworks. Then, for each pair of cycles
from this set, the Gauss linking number (GLN) defining the topological entanglements was calculated. The GLN defines how
many times one cycle passes through another one, as well as the topological direction of those passages. Finally, we compared
GLNs for all the pairs of cycles during the equibrilation with the ones obtained for the initial structure. If there were GLNs that
did not match the initial value a topology violation occurred, and the system behavior was considered as “phantom”.

We increased the values of the repulsion parametersai j and bond spring constantsKi j , and decreased the equilibrium bond
spring lengthsli j and repeated the test simulations described above until no topology violations were observed. The resulting
interaction parameters were:ai j = 100 for the solvent-solvent and polymer-polymer interactions,ai j = 120 for the solvent-
polymer for the collapsing subnetwork, andai j = 80 for the solvent-polymer for the swelling subnetwork,li j = 0.3, andKi j = 100.
These values led to non-phantom behavior of the test system and thus were used in our study.

III. Microgel equilibration

Fig. S-1Time evolution of radius of gyration during the system equilibration for various solvent selectivity. Microgel sizeN ≈ 3∙104,
subchain lengthnsub= 16.

As mentioned in the main text, the prepared conformations of IPN microgel were equilibrated for for(5−20) ∙106 DPD steps,
depending on the size of the system. Fig. S-1 shows the evolution of the radii of gyration (Rg) for the system withnsub = 16,
N ≈ 3∙104 in a selective solvent. The selective solvent is set by the repulsion parameterai j , which is set as following: ai j = 100
for the solvent-solvent and polymer-polymer interactions,ai j = 100+Δa for the solvent-polymer for the collapsing subnetwork,
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andai j = 100−Δa for the solvent-polymer for the swelling subnetwork. Two cases are shown in Fig. S-1:Δa= 10 andΔa= 20.
All measurements are done in the productive trajectory part, after the equilibration process is completed.

IV. Microgel collapse in non-selective solvent

Fig. S-2Microgel collapse in a non-selective solvent. Dependence of radius of gyration on solvent quality.

Fig. S-2, a shows the dependence of the radii of gyration (Rg) on the solvent quality of the system withnsub= 16,N ≈ 3∙104.
The solvent is non-selective solvent, and the solvent quality is set by the repulsion parameterai j , which is set as follows: ai j = 100
for the solvent-solvent and polymer-polymer interactions,ai j = 100+Δa for the solvent-polymer for both subnetworks. Fig. S-3
shows that the structure factors for variousΔa: Δa = −20 correspond to very good solvent (Fig. S-3, a),Δa = 0 corresponds to
the theta-conditions (Fig. S-3, b), andΔa = 20 corresponds to very poor solvent (Fig. S-3, c). The peak atq≈ 0.15−0.2 in cases
of swollen microgels ia an artifact of the ideal diamond-like network model.

(a) (b) (c)

Fig. S-3Microgel collapse in a non-selective solvent, structure factors for various solvent qualities: very good solvent,Δa = −20 (a),
theta-solvent,Δa = 0 (b) and very poor solvent,Δa = 20 (c).

V. Microgel collapse in selective solvent

Fig. S-4 shows the dependence of the radii of gyration (Rg) on the solvent quality for the system withnsub = 16, N ≈ 3 ∙104.
The solvent is selective solvent. The selective solvent is set by the repulsion parameterai j , which is set as following: ai j = 100
for the solvent-solvent and polymer-polymer interactions,ai j = 100+Δa for the solvent-polymer for the collapsing subnetwork,
andai j = 100−Δa for the solvent-polymer for the swelling subnetwork. Fig. S-5, a–c show radial density profiles, Fig. S-5, d–f
show structure factors for variousΔa: Δa = 0 corresponds to theta-solvent (Fig. S-5, a,d),Δa = 5 corresponds to low segregation
of subnetworks (Fig. S-5, b,e),Δa = 20 corresponds to high segregation of subnetworks (Fig. S-5, c,f). Notably, the peak at
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q ≈ 0.15− 0.2 corresponding to the artifact of the ideal diamond-like network model virtually disappears in high segregation
regime.

Fig. S-4Microgel collapse in a selective solvent. Dependence of radius of gyration on solvent quality.

(a) (b) (c)

(d) (e) (f)

Fig. S-5Microgel collapse in a selective solvent. (a–c) Density profiles and (d–f) structure factors for various solvent qualities:Δa = 0 (a,d),
Δa = 5 (b,e) andΔa = 20 (c,f).

VI. Dependence of density profiles and structure factors on the microgel’s size

Fig. S-6 shows the radial density profiles and structure factors for the systems withnsub = 20 and molecular massN from 104

to 105 in the selective solvent (Δa = 20). Fig. S-6, a, d correspond to the core–corona structure; Fig. S-6, b, e correspond to the
shell–corona structure, and Figs. S-6, c, e)correspond to the core–shell–corona structure.

4 | 1–5



(a) (b) (c)

(d) (e) (f)

Fig. S-6Microgel collapse in a selective solvent, subchain lengthnsub= 20, high segregation regime (Δa = 20). Radial density distributions
(a–c) and structure factors (d–f) for various microgels sizes:N ≈ 104 (a, d),N ≈ 4∙104 (b, e),N ≈ 105 (c, f).
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