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|. Dissipative Particle Dynamics method

The dissipative particle dynamics (DPD) simulations technique is a version of coarse-grained molecular dynamics adapted to
polymers and mapped onto the classical lattice Flory-Huggins theory (see Refs. 30-33 in the main text). In this method, polymer
chains are represented in terms of the bead-and-spring model, with particles interacting with a conservative force (repulsion), a
dissipative force (friction), and a random force (heat generator). A soft repulsive potential enhances the stability of the numerical
scheme for integrating the equations of motion and makes it possible to access large time and spatial scales when comple:
polymeric structures are studied.

In this work, simulations were performed using the DPD-VV integration scheme (see BesoldPaysal, Rev. E2000,
62, R7611), that implements the modified velocity-Verlet algorithm (see Allen and Tild&deyputer Simulation of Liquids
Clarendon Press, Oxford, 1987) for solving Newton’s equations of motion for interacting particles
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Herer;, vi, andm; denote the radius vector, velocity, and mass ofithie particle. The forcd=; acting on it is a sum of

pairwise additive contributions of conservative, dissipative and random forces,
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where the summation is performed over all other particles within a certain cutoff nradM& assume that all quantities in Eqgs.

(1) and (2) are dimensionless, and for simplicity we setrafindr¢ to unity.
The conservative forcEﬁ- includes a soft core repulsion forlfﬁ? between non-bonded particles and a bond elasticity force

fibj in bead-spring polymer chains
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whereri; = rirj, rij = |rij|, rij = rij /rij, &;j is @a maximum repulsion between particleand] is attained at; =r; Kjj is a
bond spring constant,; is the equilibrium bond spring lengtk§ andl;; are non-zeros only for the bonded pairs of particles).
The dissipative forcEi[J? (friction) and the random forcléﬁ are defined as follows:
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wherea is the amplitude of noiség is the Boltzmann constari, is the system temperatung; = vi —vj,  is a normally
distributed random variable with zero mean and unit variance chosen independently for each pair of partidtas,thedime
step. For simplicity, we assume thafT = 1 and introduce a dimensionless time unit as
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The Groot-Warren thermostat is defined by Eqs. (6) and (7). The random and the dissipative forces serve as a heat sourc
and a heat sink, respectively, preserving the momentum for each pair of the interacting particles. Following Ref. 30 in the
main text, we chose the noise parametand the reduced particle densfy both equal to 3 as that provides an optimal balance
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between fast thermal relaxation and stability of the equilibrium state. In the same paper it was showrpthat3dhe repulsion
parameter for dissimilar particles is related to the Flory-Huggins interaction parayneter

aij = X/0.306+ 25, i # |. ©)

The time step for integrating Eq. (1)was se®to= 0.004, which is 10 times smaller than the commonly used value. This
was done to enhance the stability of the numerical scheme at the elevated values of repulsion and bond stretch strengthes used
our work. The periodic boundary conditions were used in all three directions.

II. Controlling phantom behavior of the subnetworks

The soft nature of the potential of the conservative interaction between particles is one of the distinctive features of the DPD
method that helps the system to reach the state of equilibrium faster. At the same time, the soft potential has a limited amplitude
of repulsive force, and thus the particles can overlap significantly. In the case of polymer systems, it leads to the possibility
for the chains to penetrate through each other, which is usually called “phantom behavior”. For interpenetrating networks, the
phantom behavior of the chains annihilates the effect of topological entanglements between the subnetworks, which would result
in physically incorrect properties. Therefore, the interaction parameters were chosen in a way that allows the researchers to avoi
the phantom behavior.

We performed test simulations on a medium-sized IPN microggh € 20,N ~ 4-10%, equilibration for 18 DPD steps) and
checked the results for the presence of topology violations. To this end, we analyzed the instantaneous structuré&®@ry 10
steps. First, the full set of the mesh cycles in the structure was determined for both subnetworks. Then, for each pair of cycles
from this set, the Gauss linking number (GLN) defining the topological entanglements was calculated. The GLN defines how
many times one cycle passes through another one, as well as the topological direction of those passages. Finally, we compare
GLNs for all the pairs of cycles during the equibrilation with the ones obtained for the initial structure. If there were GLNs that
did not match the initial value a topology violation occurred, and the system behavior was considered as “phantom”.

We increased the values of the repulsion paramete@nd bond spring constaris;, and decreased the equilibrium bond
spring lengthd;; and repeated the test simulations described above until no topology violations were observed. The resulting
interaction parameters werey; = 100 for the solvent-solvent and polymer-polymer interacti@gs= 120 for the solvent-
polymer for the collapsing subnetwork, aag= 80 for the solvent-polymer for the swelling subnetwdik= 0.3, andK;j; = 100.
These values led to non-phantom behavior of the test system and thus were used in our study.

[ll. Microgel equilibration
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Fig. S-1Time evolution of radius of gyration during the system equilibration for various solvent selectivity. Microg#l siz 10%,
subchain lengtimg,, = 16.

As mentioned in the main text, the prepared conformations of IPN microgel were equilibrated(fo+20) - 10° DPD steps,
depending on the size of the system. Fig. S-1 shows the evolution of the radii of gyfafjoior the system withngy, = 16,
N ~ 3-10%in a selective solvent. The selective solvent is set by the repulsion paraagetenich is set as following:ja= 100
for the solvent-solvent and polymer-polymer interactians= 100+ Aa for the solvent-polymer for the collapsing subnetwork,
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anda;j = 100— Aa for the solvent-polymer for the swelling subnetwork. Two cases are shown in Figh&=110 andAa = 20.
All measurements are done in the productive trajectory part, after the equilibration process is completed.

IV. Microgel collapse in non-selective solvent
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Fig. S-2Microgel collapse in a non-selective solvent. Dependence of radius of gyration on solvent quality.

Fig. S-2, a shows the dependence of the radii of gyrafgh¢n the solvent quality of the system witl,,= 16,N ~ 3- 104
The solvent is non-selective solvent, and the solvent quality is set by the repulsion paaymetsich is set as follows:jp= 100
for the solvent-solvent and polymer-polymer interactiais= 1004 Aa for the solvent-polymer for both subnetworks. Fig. S-3
shows that the structure factors for varidds Aa = —20 correspond to very good solvent (Fig. S-3 /89— 0 corresponds to
the theta-conditions (Fig. S-3, b), ad = 20 corresponds to very poor solvent (Fig. S-3, ¢). The peakad.15— 0.2 in cases
of swollen microgels ia an artifact of the ideal diamond-like network model.
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Fig. S-3Microgel collapse in a non-selective solvent, structure factors for various solvent qualities: very good falvent20 (a),
theta-solventpa = 0 (b) and very poor solvenfya = 20 (c).

V. Microgel collapse in selective solvent

Fig. S-4 shows the dependence of the radii of gyratiRy) 6n the solvent quality for the system witly, = 16, N ~ 3- 104

The solvent is selective solvent. The selective solvent is set by the repulsion parametéich is set as following: ia= 100

for the solvent-solvent and polymer-polymer interactians= 100+ Aa for the solvent-polymer for the collapsing subnetwork,
anda;; = 100— Aa for the solvent-polymer for the swelling subnetwork. Fig. S-5, a—c show radial density profiles, Fig. S-5, d—f
show structure factors for variods: Aa = 0 corresponds to theta-solvent (Fig. S-5, aid)= 5 corresponds to low segregation

of subnetworks (Fig. S-5, b,el\a = 20 corresponds to high segregation of subnetworks (Fig. S-5, c,f). Notably, the peak at
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g~ 0.15— 0.2 corresponding to the artifact of the ideal diamond-like network model virtually disappears in high segregation
regime.
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Fig. S-5Microgel collapse in a selective solvent. (a—c) Density profiles and (d—f) structure factors for various solvent glialiti€s(a,d),
Aa=5 (b,e) andha= 20 (c,f).

VI. Dependence of density profiles and structure factors on the microgel’s size

Fig. S-6 shows the radial density profiles and structure factors for the systemsswith 20 and molecular mags from 10*
to 1 in the selective solvenia = 20). Fig. S-6, a, d correspond to the core—corona structure; Fig. S-6, b, e correspond to the
shell-corona structure, and Figs. S-6, ¢, e)correspond to the core—shell-corona structure.
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Fig. S-6Microgel collapse in a selective solvent, subchain lemgtlg = 20, high segregation regimAg = 20). Radial density distributions
(a—c) and structure factors (d—f) for various microgels sites: 10* (a, d),N ~ 4-10* (b, €),N ~ 10° (c, f).
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