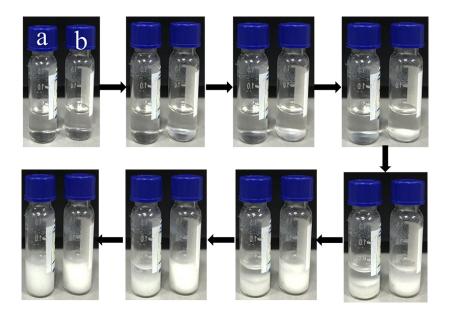

Supporting information

Lamellar-cubic transition of a dihydrazide derivative and its effect on the gel stability

Xiangyang Che,^a Chunling Zhang,^a Binglian Bai,^{a,b} Tianren zhang,^a Chunxue Zhang,^a Haitao Wang,^a and Min Li^{a*}


^a Key Laboratory of Automobile Materials, Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.

^{*} Corresponding author: E-mail: minli@mail.jlu.edu.cn

Fig. S1 DSC curves of $4D_{16}$ xerogel from cyclohexane (15 mg/mL, 20 °C) during second heating and cooling cycles with the heating rate of 10 °C/min.

^b College of Physics, Jilin University, Changchun 130012, PR China.

Fig. S2 Photos of gelation process of $4D_{16}$ at 20 °C in cyclohexane with the concentration of **(a)** 10 mg/mL, **(b)** 15 mg/mL.

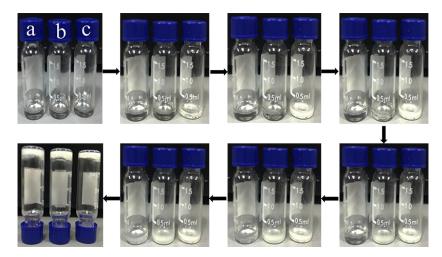
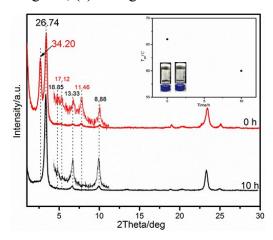



Fig. S3 Photos of gelation process of $4D_{16}$ at 20 °C in benzene with the concentration of (a) 26 mg/mL, (b) 40 mg/mL, (c) 60 mg/mL.

Fig. S4 XRD patterns of $4D_{16}$ xerogels obtained from benzene (40 mg/mL, 20 °C) after different annealing time at 58 °C. Inset graph was the plots of gel-sol phase transition temperature (T_{gel}) of $4D_{16}$ gels formed in benzene (40 mg/mL, 20 °C) annealed at 58 °C for different time period.

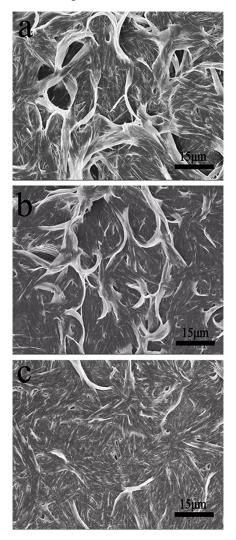
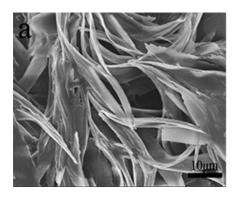
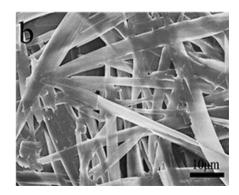




Fig. S5 SEM images of $4D_{16}$ xerogels obtained from cyclohexane (15 mg/mL, 20 °C) after different annealing time at 52 °C: (a) 0 h, (b) 110 h, (c) 260 h.

Fig. S6 SEM images of $4D_{16}$ xerogels obtained from benzene (40 mg/mL, $20 ^{\circ}\text{C}$) after different annealing time at 58 $^{\circ}\text{C}$: (a) 0 h, (b) 10 h.