Supporting Information

Prediction of Striped Cylindrical Micelles (SCM) Formed by Dodecyl-β-D-maltoside (DDM) Surfactants

Taraknath Mandal and Ronald G. Larson*

Department of Chemical Engineering, University of Michigan, Ann Arbor, MI-48109, USA

Bead-pairs	<u>σ (nm)</u>	<u>ε (kJ/mol)</u>
C ₁ - C ₁	0.47	3.5
$P_1 - P_1$	0.47	4.5
P ₂ -P ₂	0.47	4.5
$P_4 - P_4$	0.47	5.0
$N_a - N_a$	0.47	4.0
\mathbf{Q}_{a} - \mathbf{Q}_{a}	0.47	5.0
$C_1 - P_1$	0.47	2.7
C ₁ -P ₂	0.47	2.3
$C_1 - P_4$	0.47	2.0
$C_1 - N_a$	0.47	2.7
$C_1 - Q_a$	0.62	2.0
$P_1 - P_2$	0.47	4.5
$P_1 - P_4$	0.47	4.5
$P_1 - N_a$	0.47	4.5
P_1 - Q_a	0.47	5.0
P ₂ -P ₄	0.47	4.5
P ₂ -N _a	0.47	4.5
P_2-Q_a	0.47	5.0
P_4-N_a	0.47	4.0
P_4 - Q_a	0.47	5.6
N_a - Q_a	0.47	4.0

Table S1: Interaction parameters for various MARTINI bead pairs.

Figure S1: (a) *Upper panel*: Radius of gyration (Rg) of DDM micelle as a function of λ obtained from CG simulation (see main text for details). Dotted line shows the Rg of the micelle obtained from atomistic simulation. *Lower panel*: Radial Distribution function (RDF) of the center of mass of the surfactant tails and heads with respect to the micelle center obtained for different CG and atomistic simulations.

Figure S2: (a) Maltose molecules form unphysical clusters with original MARTINI force field ($\lambda = 1.0$). Structure obtained after 300 ns long simulations (b) However, maltose molecules remain well dispersed in the solution with the force field for $\lambda = 0.9$. See main

text for details. The concentration of the maltose molecules in these systems is 100mM. Structure obtained after 1000 ns long simulations.

Figure S3: Formation of the SCM structure with the CG force field for $\lambda = 0.9$.

Figure S4: Formation of the SCM structure in a system containing 100mM DDM surfactants, with a total of 960 surfactants in the simulation box.

Figure S5: Formation of the SCM structure in a system containing 125mM DDM surfactants, with a total of 600 surfactants in the simulation box.