Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Influence of dielectric inhomogeneities on the structure of charged nanoparticles in neutral polymer solutions : Supplementary Information[†]

Rituparna Samanta^a and Venkat Ganesan^{*a}

1 Additional Figures

Fig. 1 Comparison of non-dimensional electric potential as a function of distance *r* along the line joining the center of the sphere and the point charge computed analytically using image methods (Equation 1) and numerically using iterative FFT based solution. The potential is due to a point charge q = 3.0e placed in a medium of dielectric constant ε_s at a distance b = 1.58 a in front of an uncharged sphere with dielectric constant ε_p of radius a = 26.5nm. A cartoon of the setup is shown in Figure 2

The analytic expression of the non-dimensional electric potential due to a point charge q placed in a medium of dielectric constant ε_s and at a distance b from the center of an uncharged sphere of

dielectric constant ε_p is given as follows:

$$\varphi(r,\theta) = ql_b \begin{cases} \sum_{l=0}^{\infty} \frac{\varepsilon_s(2l+1)}{\varepsilon_s(l+1)+\varepsilon_p l} \frac{r^l}{b^{l+1}} P_l(\cos\theta), & \forall r \le a \\ \sum_{l=0}^{\infty} \left\{ \frac{r^l}{b^{l+1}} + \frac{a^{2l+1}}{b^{l+1}} \frac{(\varepsilon_s - \varepsilon_p)l}{\varepsilon_s(l+1)+\varepsilon_p l} \frac{1}{r^{l+1}} \right\} P_l(\cos\theta), & \forall a < r < b \\ \sum_{l=0}^{\infty} \left\{ \frac{b^l}{r^{l+1}} + \frac{a^{2l+1}}{b^{l+1}} \frac{(\varepsilon_s - \varepsilon_p)l}{\varepsilon_s(l+1)+\varepsilon_s l} \frac{1}{r^{l+1}} \right\} P_l(\cos\theta), & \forall r \ge b, \end{cases}$$

$$(1)$$

where θ is the angle **r** makes with the line joining the center of the sphere and the point charge, l_b is the bjerrum length (0.7 nm) and P_l is the associated Legendre Polynomial of order *l*. Overall, the potential for both the $\varepsilon_p/\varepsilon_s$ calculated numerically using the FFT based iterative solver closely follows the analytic results for the same.

^a Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.; E-mail: venkat@che.utexas.edu

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/ ‡ Additional footnotes to the title and authors can be included *e.g.* 'Present address:' or 'These authors contributed equally to this work' as above using the symbols: ‡, \$, and ¶. Please place the appropriate symbol next to the author's name and include a \footnotetext entry in the the correct place in the list.