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1 Discretization choice in Transfer-matrix method

In the main text transfer matrices for the isothermal-isobaric ensemble are used to compute the
system density and various other observables. For a fixed discretization scheme, the numerical
error of this approach grows as temperature decreases or density increases. To analyze the
main contributions to this error, we here investigate the results of computations under extreme
conditions (for this article), T = 0.2 and p = 0.01 for (λ, κ, ξ) = (2.5, 4, 1). Note that in this
case, the thermodynamic density is ρ = 0.60148(1).

1.1 Isometric Discretization
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Figure S1: Convergence of the isometric discretization scheme with m. The asymptotic conver-
gence in 1/m is accompanied by oscillations. Around m = 300, oscillations range ∼ 3%, but
thanks to a fortuitous cancellation choosing (m mod 6) = 3 (red dash line) reduces this error
to a fraction of a percent. For m = 303, in particular, the error is 0.05%.

We first consider an isometric discretization of si ∈ (1, κ). Figure S1 shows that density esti-
mates for this scheme oscillate with discretization number m. The period corresponds to the
number of bins needed to go from one integer subdivision of the attraction well to another.
In the case of (λ, κ) = (2.5, 4), (m mod 6) = 0 sets the lower limit of the oscillation and (m
mod 6) = 1 it upper limit. The virial (main text, Eq. (15)) suggests that this behavior might
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be related to the two discontinuities in the interaction potential: r = 1 and r = λ. Even though
the transfer matrix includes third-nearest neighbor (3NN) interactions, these don’t give rise to
any discontinuity, hence only the NNN transfer matrix is here of interest.

Figure S2: Transfer matrix for NNN interactions. (a) The whole matrix for m = 300; (b) Detail
of (a) around the potential discontinuity at si + si+1 = λ (black solid line); (c) Detail of the
same area for m = 303. Color encodes the magnitude of the entry on a logarithmic scale.

Visualizing the transfer matrix helps identify the numerical origin of this oscillation (Fig. S2).
The main Boltzmann weights are found in the upper-left triangle of side m/6, which corresponds
to next-nearest neighbor attraction regime. The hypotenuse coincides with the discontinuity of
NNN interaction at si + si+1 = λ. When (m mod 6) = 0, the hypotenuse coincides with the
right edge of the discontinuity for these entries (Fig. S2b). Because the fraction of entries that
cross the discontinuity boundary is

2m/6

(m+ 1)2
∼ 1

m
, (S1)

the error must asymptotically converge as 1/m. As can be seen in Fig. S2c, a fortuitous
cancellation surprisingly takes place for (m mod 6) = 3. Optimizing this parameter is, however,
not generally satisfying. More elaborate discretization schemes are necessary to reduce the error
more systematically.

1.2 Simpson’s Rule

To approximate the Boltzmann weight for an entry more precisely, an analogy to Simpson’s
rule for numerical integration is proposed:

M(si, si+1) =

∫ si+δs/2

si−δs/2

∫ si+1+δs/2

si+1−δs/2
e−β(u(s1)+u(s1+s2)+ps1)ds1ds2

=
1

36

{
e−βu(s1−δs/2)−βp(s1−δs/2)(e−βu(s1+s2−δs) + 4e−βu(s1+s2−δs/2) + e−βu(s1+s2))

+ 4e−βu(s1)−βps1(e−βu(s1+s2−δs/2) + 4e−βu(s1+s2) + e−βu(s1+s2+δs/2))

+ e−βu(s1+δs/2)−βp(s1+δs/2)(e−βu(s1+s2−δs) + 4e−βu(s1+s2−δs/2) + e−βu(s1+s2))
}
,

(S2)
where δsi = (κ− 1)/m denotes the interval of discretization. This general approach halves the
oscillation strength compared to the midpoint rule (Fig. S3a).
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Figure S3: Density for different discretization schemes: (a) Simpson’s rule and (b) two-part
discretization. The results still converge as 1/m, but now with a much smaller prefactor.

1.3 Two-part Discretization

Discretizing more finely the region of the matrix that contains the largest weights is also expected
to improve the numerical accuracy. For the SWL model, this region corresponds to si + si+1 <
λ. For example, dividing the list of si into two parts sA ∈ (1, sd) and sB ∈ (sd, κ), with
m = mA +mB and isometric discretization intervals δsA < δsB. Under the midpoint sampling
rule, the error resulting from the discontinuity at si + si+1 = λ is reduced if mA, δsA and sd
satisfy

sd − 1 = mAδsA = λ− 2 + δsA/2. (S3)

This choice minimizes the error because the division coincides with the discontinuity boundary
regardless of m, as for (m mod 6) = 3 in Fig. S2c. For m = 300, this two-part discretization
gives ρ = 0.60149, which indistinguishable from the asymptotic value (Fig. S3b).

This scheme was implemented for the various calculations in this article. Because the choice
(T = 0.2, p = 0.01) is an extreme case, we conclude that the result reported in this article have
at most 0.1% error. This scale is smaller than the line width in the figures of the main text.

2 Correlation Length

The spatial correlation as a function of particle separation is defined as

G(i, j) = 〈(si − 〈si〉)(sj − 〈sj〉)〉 = 〈sisj〉 − 〈si〉 〈sj〉 (S4)

Generalizing the derivation described in Ref. 1, it can be shown that the correlation decays
exponentially when |i − j| → ∞. The correlation length is then ξL = log(Λmax/|Λ2|)−1, where
Λ2 is the second dominant eigenvalue of M .

In 1D SALR lattice models, the correlation length was found to display a marked growth
at the onset of clustering.2 Here, although the correlation length also grows with decreasing
temperature at large ξ, its magnitude changes gradually and displays no remarkable feature
around the onset of clustering. However, a separate peak does appear at small ξ, when the
system undergoes condensation-like aggregation (Fig. S4). Here, the correlation length thus
only captures ordering on length scales longer than that of the trimers.
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Figure S4: Correlation length, ξL, for different repulsion strength, (a)ξ = 0.1, (b)0.5, (c)0.6 and
(d)1 for ρ = 10−5 (blue), 10−4 (red), 10−3 (yellow), 10−2 (purple) and 10−1 (green) . Note that
the λ transition identified by CDF is ξλ = 0.51.

3 Virial Coefficients Calculation

The second and third virial coefficients are obtained by integrating the Mayer function f(r):

B2(T ) = −1

2

∫
f(r)dr, (S5)

B3(T ) = −1

3

∫∫
f(r)f(r′)f(r − r′)drdr′, (S6)

where

f(r) = e−βu(r) − 1 =


−1, r < 1,

eβ − 1, 1 ≤ r < λ,

e−βξ(κ−r) − 1, λ ≤ r < κ,

0, r ≥ κ.

(S7)

The integral for B2(T ) can be evaluated analytically

B2(T ) = −e−β(1−λ) +
1− e−βξ(κ−λ)

βξ
+ 2λ− κ. (S8)

The analytical form of B3(T ) is, however, somewhat more involved. It is here obtained by
numerical integration (Fig. S5).
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Figure S5: Third virial coefficient B3(T ) under (a) λ = 2.5, where ξ = 0, 0.1, 0.5, 1 and 4, from
bottom to top; (b) ξ = 1, where λ = 2.5, 2.2, 2.1, 2.01 and 2.0, from right to left.

The terminal clustering temperature Ttc can be estimated by solving B3(Ttc) = 0. For the 1D
SWL potential κ ≤ 4 this condition has to be strictly followed for clustering to be possible; in

4



general higher-order coefficients can give rise to clustering even if B3(T ) > 0. Figure S5a shows
that the zero of B3(T ), when it exists, decreases with ξ, as illustrated in Fig. 6c of main text.
This zero vanishes at λ = 2 (Fig. S5b).
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