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Abstract

The viscosity of gel-forming fluids is notoriously complex and its study can benefit from new model systems 

that enable a detailed control of the network features. Here we use a novel and simple microfluidic-based 

active microrheology approach to study the transition from Newtonian to non-Newtonian behavior in a DNA 

hydrogel whose structure, connectivity, density of bonds, bond energy and kinetics are strongly temperature 

dependent and well known. In a temperature range of 15 °C, the system reversibly and continuously 

transforms from a Newtonian dispersion of low-valence nanocolloids into a strongly shear-thinning fluid, 

passing through a set of intermediate states where it behaves as a power-law fluid. We demonstrate that the 

knowledge of network topology and bond free energy enables to quantitatively predict the observed behavior 

using established rheology models.  
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S1. DNA sequences and sample preparation
DNA nanostars (NS) are obtained via the hybridization of the following three oligomers:

S1: 5'-p CTACTAAGCGTGGGCGTAAAAACGGTAACCGTTGCGTCATCC CGATCG-3'
S2: 5'-p GGATGACGCAACGGTTACCGAACTCAAGAAGGTATTTATAGC CGATCG-3'
S3: 5'-p GCTATAAATACCTTCTTGAGAATTTACGCCCACGCTTAGTAG CGATCG-3'

Each of these oligomers is designed to bind to the two others in 20-base pairs sections. The complementary 
sections are highlighted in the sequences above by colored characters. The hybridization of the sequences 
yields 3-arms structure in which every arm terminates in a 6-base-long auto-complementary sequence 
(CGATCG, bold in the sequence above). 
DNA oligomers were synthesized by NOXXON Pharma. DNA was hydrated using NaCl electrolyte solutions to 
yield a total ionic strength of about 20 mM. The molarity of each sequence was carefully measured and 
equalized before mixing. NS were annealed by slowly cooling the samples from 90 °C to room temperature 
(rate 0.3 °C/min). The fraction of resulting NS was determined via gel electrophoresis as detailed in previous 
works 1. We obtain solutions where more than 86% of DNA are aggregated in NS.

S2. Dynamic Light Scattering measurements
An aqueous dispersion of DNA NS at the ionic strength and concentration used in this work was characterized 
by Dynamic Light Scattering (DLS). The sample was sealed in a glass tube of 2.4 mm internal diameter (outer 
diameter 3 mm) and placed in a metal chamber in which the temperature was controlled by water circulation 
and heating resistor. The scattered light intensity I(t) ( ) was collected at 90° by an optical fiber. 𝜆 = 532 𝑛𝑚

The intensity correlation function   was calculated by a digital correlator (flex-03d Correlator.com). The 𝑔2 (𝑡)

intermediate scattering function g1(t) is than determined through the equality:

  eq. S2.1
𝑔2  (𝑡) = ⟨𝐼(𝑡')𝐼(𝑡' + 𝑡)⟩

𝑡'⁄(〈𝐼〉2
𝑡' )  = 1 + 𝑏[𝑔1(𝑡)]2

where b is the Siegert coefficient, which depends on the experimental setup. g1
2 measured at different T, 

matching the same T window used for viscosity measurement, is shown in Fig. S1

Lagtimes [s]

g 12

𝜏𝐷𝐿𝑆 [𝑠]

ℎ

Figure S1 a. Intermediate scattering functions g1
2 measured at different T. Two relaxation processes are 

clearly visible. b,c. Characteristic time of the slower process and height of the intermediate plateau h 𝜏𝐷𝐿𝑆

as a function of T. 
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The correlation functions were fitted using a double step relaxation model obtained as a sum of an 
exponential and of a stretched exponential decay as detailed in Refs. 1,2:

 eq. S2.2
𝑔2(𝑡) = 1 + 𝑏[(1 ‒ ℎ)𝑒

‒ 𝑡/𝜏𝑓𝑎𝑠𝑡 + ℎ 𝑒
‒ (𝑡 𝜏𝐷𝐿𝑆)0.8 

]2   

where h is the plateau height of the first relaxation and  are the two characteristic times of the fast 𝜏𝑓𝑎𝑠𝑡 , 𝜏𝐷𝐿𝑆

and slow relaxation modes respectively. In transient networks, the thermal concentration fluctuations are 
not fully dissipated by diffusion (first decay in figure S1a), but need to wait for the relaxation of the network 
which depends on the opening of the bonds and thus on their lifeime1. Indeed, the characteristic time of the 

slower decay  is of the same order of magnitude for the expected lifetime of the hybridized  overhangs3 𝜏𝐷𝐿𝑆

and scales with T as an activated process with the enthalpy expected for such bonds1 (Fig. S1b). Moreover, 
the height of the intermediate plateau h grows markedly with 1/T (Fig. S1c) in a way similar to the expected 
melting curve for the overhangs (see section S7). These combined evidences indicate that the slow mode of 
the concentration fluctuations is intimately related to the formation of the network and reflects the dynamics 
of the network rearrangement1,2. 
The combination of the data in Fig. S1 and of the matching between slow relaxation time and bond lifetime 
indicates that at all the temperatures considered in the rheological measurements the network retains its 
transient character, thus leading to ergodicity. This notion was explored in depth in Ref. 2, where we explicitly 
tested the thermodynamical equilibrium – and thermal history independence – of an analogous DNA 
nanostar hydrogel.

Fig. 3e of the main text shows that  and the parameter extracted from the microrheology measurement 𝜏𝐷𝐿𝑆

- representing the network restructuration time relative to the length-scale of the bead ( ) - not only ~10𝜇𝑚

display the same scaling with T, but interestingly have also comparable values. It might appear surprising that 
two phenomena occurring on different length scales have comparable relaxation times. However, we have 
recently demonstrated that length-scale independence of the network relaxation time is a remarkable 
property of transient networks 4. This peculiar dynamic behavior enables the matching of viscous and 
structural relaxation times in a large range of length-scales.

S3. Viscosity calibration and data fitting procedure for Newtonian fluids
The raw data emerging from the particle tracking are given by the space-time curves x(t) of the beads 
recorded during the shooting procedure. Being the system overdamped, we can neglect inertial effects. In 

the case of Newtonian fluids, the optical force  is thus balanced by the viscous friction:𝐹(𝑥,𝑃𝐿)

  eq. S3.1
𝐹(𝑥,𝑃𝐿) = 6𝜋𝜂𝑅

𝑑𝑥
𝑑𝑡

 

When non-Newtonian fluids are considered Eq. S3.1 can still be used, provided that the viscosity is 

understood as an apparent viscosity .𝜂𝐴

Since the optical force depends on the bead position x but not on t, it is possible to separate the two variables, 
obtaining an equation that can then be integrated between the initial coordinates (xi, ti) and those of a 
generic instant of the shooting experiment (x*, t*): 
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 eq. S3.2

𝑡 ∗ < 𝑡𝑓

∫
𝑡𝑖

𝑑𝑡 =

𝑥 ∗ < 𝑥𝑓

∫
𝑥𝑖

6𝜋𝑅𝜂
𝐹(𝑥,𝑃𝐿)

𝑑𝑥 ,

where xf and tf represent the final bead position and time of the acquired data. The optical force can be 

written as , where A is the calibration constant, PL is the laser power and g(x) is the force 𝐹(𝑥,𝑃𝐿) = 𝐴𝑃𝐿𝑔(𝑥)

profile obtained both from simulations of paraxial optics and experiments 5. 
The determination of the force profile g(x) via paraxial optics in the case of large beads (i.e. with a diameter 
much larger than the wavelength) can be generally decomposed in three steps 6. First, the optical beam is 
decomposed into a set of optical rays. Each ray is associated to a fraction of the total optical power, defined 
thanks to the analysis of the far-field intensity distribution, and has a specific direction, derived by analyzing 
the gradient of the optical phase. Second, the interaction of each ray with a microbead, in a given position, 
is considered and the optical forces (scattering force and gradient force) exerted on the microbead are 
calculated by summing up the contributions from each ray. Third, the force-calculation procedure is repeated 
for every microbead position considered interesting for the experiment 6.It is worth underlining that in order 
to properly use this approach a careful characterization of the in-chip optical parameters must be carried 
out, so as to include the effect of possible losses or system fabrication imperfections in the analysis. A careful 
description of the procedure is reported in 5–8. 

To determine the calibration constant A we define the function  based on eq. S3.2: 𝑅(𝑡 ∗ ,𝑥 ∗ ,𝑥𝑖,𝑡𝑖,𝜂,𝐴)

 eq. S3.3

𝑅(𝑡 ∗ ,𝑥 ∗ ,𝑥𝑖,𝑡𝑖,𝜂,𝐴) =

𝑡 ∗ < 𝑡𝑓

∫
𝑡𝑖

𝑑𝑡 ‒
6𝜋𝑅𝜂
𝐴𝑃𝐿

𝑥 ∗ < 𝑥𝑓

∫
𝑥𝑖

𝑑𝑥
𝑔(𝑥)

 , 

We performed experiments on fluid with known viscosity (e.g. pure water at various controlled 

temperatures) and determined A by minimizing the value of . 

 

𝑡𝑓

∫
𝑡𝑖

𝑅2𝑑𝑡 ∗  

Conversely, once A is known, the viscosity  of an unknown fluid can be obtained through the same 𝜂

minimization procedure. 
The calibration procedure was repeated after every measurement campaign to check the stability of the 
system in terms of force and calculated viscosity. We find the setup to be very stable (difference between 
calibration constant A before and after the experiments is less than 3%) also thanks to the monolithic 
alignment between the optical components and to the laser stability.

S4. Data fitting procedure for shear thinning fluids
The data analysis described in the previous section cannot be simply extended to non-Newtonian fluids, 
where  varies with the speed of the bead as explained in the main text.𝜂

Nevertheless, we can replace the viscosity  in S.Eq. 3.1 with an apparent viscosity for which we have adopted 𝜂

the Cross model functional dependence: 

   eq. S4.1

𝜂𝐴 =
𝜂0 ‒ 𝜂∞  

1 +
𝑣𝜏
𝑅

+ 𝜂∞
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We obtain a quadratic equation  whose coefficients are given by:𝑎𝑣2 + 𝑏𝑣 + 𝑐 = 0

  eq. S4.2
𝑎 =

𝜂∞𝜏

𝑅
   𝑏 = 𝜂0 ‒

𝑔(𝑥)𝐴𝑃𝐿𝜏

6𝜋𝑅2
    𝑐 =‒

𝑔(𝑥)𝐴𝑃𝐿

6𝜋𝑅

Again, we can separate the variables and define the functional R:

  eq. S4.3

𝑅(𝑡 ∗ ,𝑥 ∗ ,𝜂0,𝜏) =

𝑡 ∗ < 𝑡𝑓

∫
𝑡𝑖

𝑑𝑡 ‒

𝑥 ∗ < 𝑥𝑓

∫
𝑥𝑖

2𝑎

‒ 𝑏 + 𝑏2 ‒ 4𝑎𝑐
𝑑𝑥

to be minimized with respect of the parameters  over the trajectory x(t). The results and the accuracy 𝜂0 𝑎𝑛𝑑 𝜏

of the fit are visible in Fig. 3a of the main text, while the extracted parameters are shown in Fig. 3e. 

S5. Simplified derivation of the shear thinning viscosity model
The quantitative interpretation of the data in this paper makes use of the “Soft Glass Material” (SGM) model, 
introduced and developed in Ref. 9. The use of such model provides an accurate evaluation of the 
temperature where the system becomes non-Newtonian and of the T range involved in such crossover, as 
shown in Fig. 3f and described in the main text.

In the spirit of facilitating the appreciation of the physics included in these models, we propose in this section 
a simplified description of the viscosity of a transient network such as the DNA NS hydrogel. This rough model 
lacks the accurate evaluation of the statistical distribution of the quantities of the SGM model of Ref. 9 and 
of the extended study of the predicted viscoelastic behavior, but it is more transparent in terms of physical 
meaning. 

As in the SGM model, we picture the connected NS as a set of trapped elements that can escape – i.e. open 
the NS-NS bonds – either because of a spontaneous activated process or as a result of an external shear. The 
shear exerted by the bead motion produces a deformation on the NS network which responds elastically. 
The transient and reversible nature of the network plays here a crucial role since it leads to the dissipation 
of the stored elastic energy, which in fact is revealed by our experiments as an apparent viscous force. Such 
dissipation can take place either because of the finite lifetime of the bonds, or via their yielding due to the 
shear. 

Thus, we model the DNA NS gel as a network of connected springs of elastic constant k and density 3/2  (𝑛𝑁𝑆

 is the number density of NS and 3/2 takes in account for their valence f=3). We assume that each spring 𝑛𝑁𝑆

has a mean lifetime  before disconnecting and a maximum elongation  before breaking. 𝜏 𝑙

Let’s then consider a bead that moves forward of  with a speed  while immersed in such a network, thus  Δ𝑥  𝑣

straining the network locally. We can assume that the average frictional force that the bead experience in 
the time of the experiment (set by ) is the sum of the elastic responses of the springs strained by the Δ𝑥/𝑣

motion. More precisely the springs belong to two categories:

 springs that, during the bead displacement, are elongated more than , and thus yield ( ). 𝑙 𝑁𝑏𝑟𝑜𝑘𝑒𝑛

 springs with elongation   ( ).  𝑙 < 𝑙 𝑁𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛
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We assume here that the lifetimes of the springs are exponentially distributed, with a characteristic time 
given by the average lifetime In particular, we assume a distribution of lifetimes m(t) 

eq. S5.1𝑚(𝑡) ÷   𝑒 ‒ 𝑡/𝜏

We are here focussing only on the bonds that are strained by the motion of the bead. Although the shear 
rate induced by the bead motion depends on the distance from the bead, it has been often approximated by 
assuming that, in the volume involved in the deformation, . This assumption leads, in the case of 𝛾̇ = 𝑣 2𝑅

power-law fluids, to errors within 50% 10. Each spring is thus deformed with a rate proportional to , 𝑣𝐿 2𝑅

where L is the mean mesh size of the network. We can therefore replace t with the ratio between the 
elongation  of the spring and , where C is a (unknown) dimensionless coefficient, to obtain a distribution 𝑙 𝑐𝑣𝐿 𝑅

of spring strain:

 eq. S5.2𝑚(𝑙) ÷  𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏

Within this distribution, some of the springs are not strained enough during their lifetime to be actively 
broken by the bead motion ( ), and thus spontaneously open. Their fraction over the total is:𝑙 < 𝑙

  eq. S5.3a

𝑚𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛 =

𝑙

∫
0

𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏𝑑𝑙

∞ 

∫
0

𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏𝑑𝑙

= 1 ‒ 𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏

Viceversa, the fraction of springs that during their lifetime are strained enough to break are: 

 eq. S5.3b

𝑚𝑏𝑟𝑜𝑘𝑒𝑛 =

∞

∫
𝑙

𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏𝑑𝑙

∞ 

∫
0

𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏𝑑𝑙

= 𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏

We can now write the average frictional force experienced by the bead during a displacement x as the sum 
of the contributions of these two class of springs. Using Hooke law: 

 eq. S5.4
𝐹 ~𝑁𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛𝑘𝛿̅𝑥  +

1
Δ𝑥

𝑁𝑏𝑟𝑜𝑘𝑒𝑛
1
2

𝑘𝑙2

 Where  is the number of unbroken (broken) springs and  is the mean elongation of the 𝑁𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛(𝑁𝑏𝑟𝑜𝑘𝑒𝑛) 𝛿̅𝑥

strained springs. The populations  can be computed as:𝑁𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛, 𝑁𝑏𝑟𝑜𝑘𝑒𝑛

          
𝑁𝑜𝑝𝑒𝑛 =

3
2

𝑛𝑁𝑆 𝑉𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛𝑚𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛 𝑁𝑏𝑟𝑜𝑘𝑒𝑛 =
3
2

∗ 𝑛𝑁𝑆 𝑉𝑏𝑟𝑜𝑘𝑒𝑛𝑚𝑏𝑟𝑜𝑘𝑒𝑛

where is the number density of springs and V is the volume of hydrogel in which the bonds are 
3
2

𝑛𝑁𝑆   

strained or broken by the bead motion. Vunbroken is the volume encompassing all springs that are affected by 
the bead motion, which we estimate being of the order of R3. Vbroken is instead the volume in which bonds 
are actively broken by the bead motion, which we approximate with 2 R L x, as discussed in Section S8. 
Substituting (S5.3a) and (S5.3b) in (S5.4) we obtain:
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eq.  S5.5
𝐹 = 3/2𝑛𝑁𝑆𝑘(𝑅3𝑚𝑢𝑛𝑏𝑟𝑜𝑘𝑒𝑛𝛿̅𝑥 +

1
2

2𝑅𝐿𝑚𝑏𝑟𝑜𝑘𝑒𝑛 𝑙2)
 can be explicitly computed from the distribution m(t):𝛿̅𝑥

𝛿̅𝑥 =

𝑙

∫
0

𝑙 𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏 𝑑𝑙

𝑙

∫
0

𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏𝑑𝑙

=

𝑐𝑣𝐿𝜏
𝑅 (1 ‒ 𝑒

‒
𝑙𝑅

𝑐𝑣𝐿𝜏) ‒ 𝑙𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏

1 ‒ 𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏

Inserting the result in (S5.5):

 eq. S5.6
𝐹 =  3/2𝑛𝑁𝑆𝑘𝑅(𝑅2𝑐𝑣𝐿𝜏

𝑅 (1 ‒ 𝑒
‒

𝑙𝑅
𝑐𝑣𝐿𝜏) ‒ 𝑙 𝑒

‒
𝑙𝑅

𝑐𝑣𝐿𝜏(𝑅2 ‒ 𝐿𝑙 ))
Since , we can simplify (S5.6) as:𝑙 ≪ 𝑅 (𝑙 = 14.5 𝑛𝑚, 𝑠𝑒𝑒 𝑆6)

 eq. S5.7
𝐹~ 3/2𝑛𝑁𝑆𝑘𝑐𝑣𝐿𝜏𝑅2(1 ‒ 𝑒

‒
𝑙𝑅

𝑐𝑣𝐿𝜏)
The viscosity can be then derived via the Stokes equation dividing (S5.7) for  obtaining:6𝜋𝑅𝑣

    eq. S5.8
𝜂 = 𝜂0(1 ‒ 𝑒

‒
𝑙𝑅

𝑐𝑣𝐿𝜏)

where  .
𝜂0 =

3/2 𝑛𝑁𝑆𝑘 𝜏𝑐𝐿𝑅
6𝜋

Despite the roughness of the approach, this simple model captures a few features worth mentioning: 

 it captures the transition from Newtonian to non-Newtonian viscosity, the key quantity being , a 

𝑙𝑅
𝑐𝑣𝐿𝜏

dimensionless ratio built on the comparison between the maximum strain sustained by the springs 
and the strain that is produced by the bead during their lifetime; 

 it relates the growth of the Newtonian component to the dissipation following the spontaneous 
opening of the springs. The longer the bond lifetime, the larger the energy that can be incorporated 

into the spring network, the larger the energy dissipated, as expressed by  ;𝜂0 ÷ 𝜏

 it relates the non-Newtonian component of the viscosity to the active breaking of the bonds, which 
intrinsically yields a force independent on bead velocity, as discussed in the main text and in Section 
S8 below.  Interestingly the formula shows the experimental observed dependence on the lifetime 

 both in the zero-shear viscosity  and in the dimensionless term  .𝜏 𝜂0

𝑙𝑅
𝑐𝑣𝐿𝜏

If we assume CL ≈ ℓ we can write Eq. (S5.8) as:

 eq. S5.8
𝜂 = 𝜂0(1 ‒ 𝑒

‒
𝑅
𝑣𝜏)
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and compare it to the Cross model adopted in our interpretation of the data as described in the main text 

  eq. S5.9

𝜂 =
𝜂0

1 +
𝑣𝜏
𝑅

as shown in Fig. S2, where we have used the two dimensionless quantities  and . The behavior 𝜂/𝜂0
𝐵 = 𝑣𝜏

𝑅

is quite similar, although the Newtonian to non-Newtonian transition in our simplified model appears to be 
sharper, a possible consequence of the many rough approximations here introduced, as further discussed in 
Section S8.

10-5 100 105

B=v /R

10-3

10-2

10-1

100

/
0

Cross model
Exponential model

Fig. S2. Shear thinning viscosity dependence on the dimensionless parameter B for the Cross model (S5.9) 
(red line) and the Exponential model (S5.8) (black line) 

S6. Structure of a valence-3 network
The aim of this paragraph is to provide an estimate of the density and structure of a dense phase of NS having 
valence equal to 3. The phase behaviour of low-valence colloids, or “patchy particles”, have been extensively 
described 11. As the valence decreases, the density of the dense phases (liquids, crystals) also decreases, 
leading to structures that have been described as “empty liquids”. 

In the case of valence f = 4, density and distances can be deduced from the well-known structure of the 
diamond lattice. In a diamond lattice, if particles or atoms were to be replaced with spheres whose diameter 
r matches their nearest-neighbor distance in the lattice, the volume fraction filled by such spheres in a 
diamond lattice would be  = 0.34. Although no atomic lattice based on f = 3 is known, studies of the liquid 
phase of patchy particles indicate that in this case the volume fraction would be approximately  ≈ 0.18 (12). 
On this basis we can calculate, for our system, the distance between bonded NS at low T. 

Given the molecular weight of each NS (MWNS = 45000 g/mol) and the concentration (c = 10 mg/ml), we can 
compute the number density , and from it the distance  between bonded NS:𝑛𝑁𝑆 𝑙

 eq. S6.1

4
3

𝜋𝑟3 =
𝑉
𝑁

⋅  𝜙 =
0.18
𝑛𝑁𝑆

=
0.18

𝑐
𝑀𝑊

⋅ 1000 ⋅ 𝑁𝐴
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where N is the total number of NS, V is the total volume, NA is the Avogadro number. From Eq. S6.1 we obtain 
, and thus .𝑟 = 6.8 𝑛𝑚 𝑙 = 2𝑟 = 13.6 𝑛𝑚

An alternative approach is to develop a lattice structure for f = 3 based on the diamond lattice. This can be 
done by splitting each f = 4 node into two f = 3 nodes as shown in Fig. S3. The unit cell of the diamond lattice 
contains 8 atoms/particles (4 are internal, 8 in corners, 6 on faces), has volume , while the nearest-neighbor 𝑎3

inter particle distance is . The new f=3 unit cell resulting from the atom replacement described in Fig. ( 3 4)𝑎

S3, has instead volume , inter particle distance and contains 16 
𝑉𝑢𝑛𝑖𝑡 = 𝑎3(1 + 4 ⋅

3
4

 ) 𝑙 = 3/4𝑎 

atoms/particles (9 are internals, 8 in corners, 10 on faces, 4 on edges). 

Here again, from the experimental number density, we can recover the distance between bonded NS by 
noticing that the ratio between a volume V and the volume of a unit cell  must equal the number of NS 𝑉𝑢𝑛𝑖𝑡

contained in the volume divided by the number of NS contained in a unit cell:

 eq. S6.2

𝑉
𝑉𝑢𝑛𝑖𝑡

=
𝑁
16

So that, introducing number density  we obtain:𝑛𝑁𝑆 = 𝑁/𝑉

 eq. 
𝑛𝑁𝑆 =

16
𝑉𝑢𝑛𝑖𝑡

=
16

𝑎3(1 + 3)
S6.3

Remembering that , solving by  we found  a value slightly bigger that the previous 𝑎 = 4/ 3 𝑙 𝑙 𝑙 = 15.3 𝑛𝑚

evaluation. One possible reason is that in the “modified diamond lattice” approach we force the NS to have 
a rigid planar structure with angles between arms equal to 120°, while in the actual system this angle can 
fluctuate. 

Since both approaches include some approximation, we decided to adopt the intermediate value 
. This length should be compared with 16 nm, the inter-NS distance that we would expect when 𝑙 = 14.5 𝑛𝑚

their arms are perfectly straight and aligned.
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f=4 f=3

Fig. S3 The diamond unit cell (left-hand side panel) can be transformed into a valence 3 unit cell (right-
hand side panel) by splitting the valence 4 nodes into two valence 3 nodes.

S7. Computation of n3 as a function of temperature
The aim of this paragraph is to evaluate the effective connectivity of the network when only a fraction p(T) 
of NS terminals are actually connected. p(T) can be computed on the basis of the NS terminal concentration 
and of the free energy involved in the NS-NS bonds, which can in turn be evaluated using the Nearest-
Neighbours model (NN)13 as implemented by the computing tool NUPACK 13. Fig. S3 shows p(T) computed for 
the NS overhang sequence CGATCG at the concentration 666 µM, i.e. three times the NS concentration, since 
each NS has three overhangs.

 

0 10 20 30 40 50
T [°C]

0

0.2

0.4

0.6

0.8

1

p(
T)

Fig. S3 Bond fraction p as a function of the temperature T as calculated by the NN model. 

The quantity n3(T) is the number density of NS involved as nodes in a percolating (or large) network. With 
respect to nNS, in n3 we need to exclude both NS with less than three bonds and NS that, even fully connected, 
terminate in a dangling end. n3(T) is a crucial quantity in the description of the mechanical properties of the 
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network since the mechanical stress response we observe is given only by the so called “active chains”14, i.e. 
by the NS which are put under tension as the bead moves. As also reported in the main text, given the density 
of “active nodes” n3(T), the number of active chains  is:𝜈 (𝑇)

  eq. S7.1
𝑛3(𝑇)

3
2

= 𝜈 (𝑇)

In general, the dependence of the number of nodes n3 on T in a system with valence 3 (f=3) is expected to be 
non-trivial as cutting even a few bonds can have a large impact on the network structure, which rapidly 
becomes loosely connected (large loops), and eventually disconnected. 

The fraction of active chains can be estimated using a tree-like approach for f=3 resulting in the 
expression15,16,17:

 eq. S7.2
𝑛3(𝑇) = 𝑛𝑁𝑆(2𝑝 ‒ 1

𝑝 )3

Where we notice that the formula implies p>0.5, a consequence of the percolation limit of the network, or 
in other words, the gelling point of the system15.

We further numerically checked this result by using the modified diamond structure defined in the previous 
section (S6). We used this crystal structure, we replicated the unit cell in the three dimensions to obtain a 
lattice of 105 nodes, and evaluates the effect on topology and connectivity of p(T) by randomly deleting bonds 
within the lattice. We cut each bond with equal probability 1-p(T) and explore the resulting connectivity c of 
each bond. Four possible cases can be found: 

 c=0. NS is fully disconnected from the network
 c=1. NS binds one other NS. This is the dangling bond case
 c=2. NS binds 2 other NS. In this case, the NS acts as a “wire” between nodes, but it is not a node itself. 

 c=3. NS binds 3 NS. This NS potentially is a node of the network. 

Clearly, in the first three cases NS do not contribute to the network connectivity as nodes. Even in the fourth 
case, it can happen that a fully bonded NS is connected to a dangling end, thus not being a real active node.  
To properly consider this case, we recursively check the neighbours NS of every c=3 element until we found 
other c=3 NS, thus confirming its role as a node in the network. If instead we find a c=1 NS, we remove the 
original c=3 NS from the count of the network-connecting nodes. 

Fig. S5a compares the T dependence of n3/nNS calculated from S7.2 (red line) and estimated numerically as 
described above (blue line). For comparison, we also show the fraction of bonds p(T) (dashed line, same as 
in Fig. S3) and the number of c=3 nodes without the dangling bond correction (purple line). By adopting the 

phantom network model introduced in the main text, we can estimate  from n3 as 𝐺’ = 𝑘𝐵𝑇3/2𝑛3(1 ‒ 2/𝑓)

computed using the tree-like theory (Fig. S5b, red line), and numerically with dangling bond correction (blue 
line) and without it (purple line).
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Fig. S5. a: fraction n3/nNS of active nodes as a function of temperature T as calculated according to the 
tree-like theory (red line), and computed numerically with dangling bond correction (blue line) and without 
it (purple line). For comparison p(T) as calculated by NUPACK (dashed line) is also shown. b: bulk modulus 
G’ calculated according to the phantom network model for computation of n3/nNS.  

S8. Estimate of the frictional force in the network fracturing regime  

By using the number of active nodes  calculated in the previous section and the free energy involved in 𝑛3(𝑇)

the NS-NS bonds , it is possible to evaluate the frictional force experienced by a bead of radius R Δ𝐺(𝑇)

traveling in an NS hydrogel in the limit of long-living bonds. In this condition, the bead can move only by 
breaking bonds and the frictional force is independent on bead velocity. 

 The reference model to perform this evaluation of such a force is the classic Lake-Thomas model, as 
described in the main text. Here we offer a quantitative estimate of the same quantity via a direct intuitive 
approach.

The energy dissipated to move the bead forward of a quantity x is given by the energy E stored in the bonds 
that the bead needs to break to advance, which is the same regardless of the bead velocity. We can thus 
write: 

 eq. S8.1
𝐹𝐹𝑅 =

𝐸
Δ𝑥

Thus, to evaluate the force, we need to estimate the number of bonds that are broken as the bead moves 
forward of a length x. Since the network is connected and flexible, the fractured bonds are presumably 
those needed to form an opening large enough to let the bead move forward. We thus assume the width of 
such fracture to equal the length 2R, the diameter of the bead. The bonds involved in such fracturing are 
those within a parallelepiped having volume V 

 eq. S8.2𝑉~ 2𝑅 𝑙 ∆𝑥

Where  is the characteristic length of the bonds (  =14.5 nm). In other words, the bonds involved are those 𝑙 𝑙

that would be cut by a blade of width 2R and thinner than the bond length, advancing in the hydrogel of a 
length x. Thus

  eq. S8.3
𝐸 = 𝑁𝑏𝑜𝑛𝑑𝑠 Δ𝐺(𝑇) = 𝑉 

3
2

𝑛3(𝑇) Δ𝐺(𝑇)

Where V is the volume of the layer,  is the energy of the bonds at a temperature T, n3(T) is the number Δ𝐺(𝑇)

density of active nodes as calculated in the previous section. Substituting S8.2 and S8.3 in S8.1 we obtain:
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.  eq. S8.4
𝐹𝐹𝑅 = 2𝑅 𝑙 

3
2

𝑛3(𝑇)Δ𝐺(𝑇)

Since the quantities on the right-hand side of Eq. S8.4 are known, we can calculate the tearing force of the 
network. For T=22°C, we obtain , in good agreement with both the experimental findings and the 𝐹 ≈ 75 𝑝𝑁

prediction of the Lake-Thomas model. 

S9. Estimate of the stored elastic energy
As the bead moves forward, the NS network is deformed, and elastic energy is stored. Evaluating this quantity 
is useful because when the elastic energy stored in the hydrogel becomes comparable to the energy 
necessary to break the bonds, the system crosses over from the “stretched elastic network” regime to the 
“network fracturing” regime, and the viscosity becomes non-Newtonian. 

As described in the main text, the stress on the hydrogel can be written as:

 eq. S9.1𝜎 = (𝜂𝑤 + 𝐺'𝜏𝐵)𝛾̇ 

where  is the spontaneous lifetime of the NS-NS bonds, which depends on T as an Arrhenius function. If we 
approximate the shear rate to the one produced on the equatorial region of the bead, which we estimate in 

v/2R 10 , and we consider it to be applied on the surface , we can estimate the total elastic energy Etot to 4𝑅2

move the bead forward of a length x at a speed v as:

 eq. S9.2
𝐸𝑡𝑜𝑡 = 𝐹𝑒𝑙Δ𝑥 = 4𝑅2(𝐺'𝜏

𝑣
2𝑅)Δ𝑥 

The maximum deformation x of the system is also limited by the bond lifetime , since for longer times the 

network bonds open and relax. This sets the maximum deformation as . We can thus write the Δ𝑥𝑚𝑎𝑥 = 𝑣𝜏𝐵

maximum energy as:

  eq. S9.3𝐸𝑡𝑜𝑡,𝑚𝑎𝑥 = 2𝑅𝐺'𝑣2𝜏2

Taking into consideration the number of bonds (Nbonds) in the volume given by Eq. S8.2, it is possible to 
evaluate the maximum elastic energy stored per bond as:

  eq. 

𝐸𝑒𝑙 =
𝐸𝑡𝑜𝑡,𝑚𝑎𝑥

𝑁𝑏𝑜𝑛𝑑𝑠
=

2𝑅𝐺'𝑣2𝜏2

2𝑅 𝑙  𝑣𝜏 𝜌
3
2

𝑛3(𝑇)
=

2𝐺'𝑣𝜏
3𝜌 𝑛3(𝑇)𝑙 

S9.4

Since the dependence on T of the various parameters ( ) is known, as discussed in the main text and 𝜌,𝐺',𝜏,𝑛3

in the sections S6 and S7, such energy can be explicitly calculated as a function of T. The result of such 
evaluation is plotted in Fig. 3f of the main text for three different choices of v (blue lines, left-hand axis; 
dotted line, v=3 m/s; continuous line, v=10 m/s; dashed line, v=60 m/s).

The comparison between maximum stored elastic energy Eel per bond and disruption free energy for bond 
G is shown in Fig. 3f of the main text. When Eel > G, the elastic energy becomes larger than the energy 
required to open the bonds, so the bead motion actively breaks the bonds, the system enters in the “network 
fracturing” regime and the viscosity becomes non-Newtonian. 
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Specifically, the crossover is evaluated in Fig. 3f on the basis of the results of SGR model9,  where it is found 
that the crossover between Newtonian and non-Newtonian takes place when the elastic energy is within a 
given range of the bond rupture energy: G – 2kBT < Eel < G – kBT. However, the crossover can be satisfactory 
located even by considering Eel = G, i.e. the crossing of the blue line and red line in Fig 3f. 

We stress the fact that these evaluation, while possibly suffering of simplifications, are performed with no 
adjustable parameters, and rely entirely on the geometry of the NS, their concentration, and the general 
knowledge about DNA hybridization (energy, temperature dependence, bond lifetime) available in literature. 
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