Electronic Supplementary Information

Harmonic Analysis of Surface Instability Patterns on Colloidal Particles

Tero Kämäräinen,^a Mariko Ago,^a Jani Seitsonen,^b Janne Raula,^b Esko I. Kauppinen,^b Janne Ruokolainen^b and Orlando J. Rojas^{ab*}

^a Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland

^b Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland

* Corresponding author: orlando.rojas@aalto.fi

Table S1 Numerical values (\pm 95 % confidence interval) of particle parameters: root-mean-square surface roughness σ , initial aerosol droplet radius $R_{\rm I}$, buckling transition radius $R_{\rm B}$, final mean spherical radius $\langle R_{\rm F} \rangle$, spherical harmonic mean sphere radius $R_{\rm S}$, final surface area $A_{\rm F}$ and final volume $V_{\rm F}$.

Parameter	C1	C2	W3
$\overline{\sigma}$ (nm)	26.1	36.0	29.7
$R_{\rm I}~({\rm nm})$	498	668	1181
$R_{\rm B}~({\rm nm})$	140	196	283
$\langle R_{\rm F} \rangle$ (nm)	103.7	138.8	235.9
$R_{\rm S}~({\rm nm})$	92.3	126.2	233.8
$A_{\rm F}~({\rm nm}^2)$	2.456×10^5	4.842×10^5	1.007×10^6
$V_{\rm F}~({\rm nm^3})$	3.979×10^6	9.624×10^6	5.303×10^7

Fig. S1 (a) A schematic illustration of the particle at time $t = t_{\rm F}$ (left) and at its pre-buckled state accompanied with different variables used in this study: radius R, mean spherical radius $\langle R_{\rm F} \rangle$, crust thickness h, volume Vand surface area A. (b) Estimation of the hidden surface area fraction due to creasing (self-contact) for C1. In the left vertical axis, crust thickness as a function of sphere radius needed to reproduce the final particle volume $V_{\rm F}$. The two annuli represent schematically the shape transition as R increases, whereby a hollow cavity of larger volume is needed to keep the solid volume constant. Following the blue dashed line, an estimate for $\delta A = 0.07^{+0.12}_{-0.09}$ can be calculated from the measured crust thickness $h_{\rm F} = 17$ nm (for C2, $\delta A = 0.01^{+0.09}_{-0.07}$). The blue dotted lines represent the 95 % confidence bounds for the crust thickness measurement (± 2 nm). In the right vertical axis, sphere surface area normalized with respect to the final surface area $A_{\rm F}$ determined from the tomogram. The red dash-dot line shows the buckling transition radius $R_{\rm B}$ as well as the calculated crust thickness $\tilde{h}_{\rm F} = 18.6$ nm when the volume of the crust equals $V_{\rm F}$.

Fig. S2 Surface area A as a function of volume V. The dashed line represents A(V) of a sphere whereas the dotted lines represent the A(V) evolution of the spherical harmonic models as the maximum harmonic degree ℓ_{max} used in the reconstructions is increased from zero to its final value 64 (marked by \times). Hollow circles show the final surface area A_{F} as a function of the final volume V_{F} determined from the tomograms, with the solid line showing their power law fit.

Fig. S3 Value of multipole $r_{\ell}(\theta, \phi)$ planarity measure $L^2_{\ell}(\hat{n}_{\ell})$ when the multipole is aligned with its preferred axis \hat{n}_{ℓ} .