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1. Zero-average contrast approach

The ZAC solvent, in which Hm and Dm contribute to the scattered
intensity equally, was determined to be at 48 vol% of H2O in
D2O. This ratio is reflected by the data in Figure S.1, in which
the particle contrast in different H2O/D2O mixtures was obtained
from I0 ≡ I(q→ 0).
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Fig. S.1 Contrast variation curves in H2O/D2O solvent mixtures for
hydrogenated (squares) and deuterated (circles) particles. In all cases
the number density was kept constant and the structure factors were
cancelled by additions of KCl. The solid red lines are linear fits to the
data.

2. Fit to SAXS data

The q-dependent intensity, I(q), of the SAXS data can be described
by I(q) ∝ Pm(q)Sm(q), where Pm(q) and Sm(q) are the measured
form and structure factor, respectively. The form factor Pm(q) is
assumed to satisfy

Pm(q) =

∫
∞

0 P(q,RHC,σ)D(RHC,σPD)V 2
sphere dR∫

∞

0 D(RHC,σPD)V 2
sphere dR

+ Ifluct, (S.1)

where D(RHC,σPD) the Gaussian size distribution, Ifluc is the
Lorentzian function to account for polymer network fluctuations,
Vsphere the particle volume and P(q,RHC,σ) the fuzzy sphere form
factor,

P(q,RHC,σ) =

[
3(sin(qRHC)−qRHC cos(qRHC))

(qRHC)3 exp
(
− (σq)2

2

)]2

.
(S.2)

Here, RHC and σ are the hard-core radius and the fuzziness pa-
rameter, respectively. We approximate the exact Sm(q) by the de-
coupling approximation in the same way as Westermeier et. al.1

Sm(q) = [1−X(q)]+X(q)S(q), (S.3)

where S(q) is the monodisperse structure factor calculated through
the established modified penetrating background-corrected rescaled
mean sphere approximation (MPB-RMSA) scheme used in previous
publications.2,3 The decoupling amplitude factor X(q) is defined
as

X(q) =
[
∫

∞

0 D(R,σ) f (q,R)Vsphere dR]2

Pm(q)
∫

∞

0 D(R,σ)V 2
sphere dR

, (S.4)

where f (q,R) is the normalised form amplitude of a particle with
radius R, i.e. P(q,R) = f (q,R)2.

3. pH vs. concentration

The pH was measured as a function of the microgel weight frac-
tion and is represented as points in Figure S.2. The fitted curve
corresponds to an acid with pKa 4.2.
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Fig. S.2 pH vs. concentration (circles). The line are the best fit for an
acid with a pKa 4.2.

4. S(q) with additional Ornstein-Zernike term

In order to account for the low-q deviation we have added an
Ornstein-Zernike, SOZ(q) term to the structure factor,

SOZ(q) =
A

(1+ξ 2q2)
, (S.5)

where ξ is the correlation length and A the amplitude. The total
S(q) is then described as

S(q) = SOZ(q)+SMPBRMSA(q), (S.6)

where SMPBRMSA(q) is the monodisperse structure factor calcu-
lated through the established MPB-RMSA scheme. We then follow
Equations S.1-3 for obtaining I(q), as the red line in Figure S.3
A shows. Note that the black curve shows the best fit without the
Ornstein-Zernike contribution. We also used the calculated S(q) as
an input to calculate the dynamic function, D(q). As can be seen in
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Fig. S.3 I(q), A, and D(q), B, as a function of q at a concentration of 0.3
wt%. The red curves are the best fit with an added Ornstein-Zernike
contribution, while the black curves do not include this term.

Figure S.3 B, an equally good fit can be see for D(q) in comparison
to with out the Ornstein-Zernike contribution, black curve.

5. High-ionic strengths
In a few test sample, 0.1, 0.02 and 0.005 wt% we added 10 mM
NaCl to screen the electrostatic interactions. The resulting hydro-
dynamic radius, open red circles, and static radius, black open cir-
cles, can be seen in Figure S.4. The same result for de-ionised
samples are shown as solid circles in the same figure.
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Fig. S.4 The hydrodynamic radius, red, and static radius, black, radius
vs. concentration. Data for the microgels with 10 mM added NaCl is
shown by open circles. The data for the deionized microgels is shown by
the full circles.

6. Electric field profiles

The Poisson-Boltzmann cell model is used to numerically calculate
the electrostatic potential inside the microgel particle, as well
as in its vicinity. As described in the main text, the cell size
is determined by the number density of the microgels. Charge
neutrality dictates that the electric field should vanish at the
boundary of the cell, which results in a density-dependent field
profile. The calculated profiles are shown in in Figure S.5.
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Fig. S.5 The electric field strength for heterogeneously crosslinked
microgels with a swollen radius of 70 nm, at weight fractions 1.8 wt %,
0.18 wt %, and 0.018 wt %. The corresponding cell radii Rcell at these
weight fractions are 622 nm, 289 nm, and 134 nm, respectively.
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