

Supporting Information for: Lanning, Thinning and Thickening of Sheared Colloids in a Two-dimensional Taylor-Couette Geometry

Antonio Ortiz-Ambriz¹, Sascha Gerloff², Sabine H. L. Klapp², Jordi Ortín^{1,3}, and Pietro Tierno^{1,3,4*}

¹Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain

²Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany

³Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain and

⁴Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain

(Dated: March 2, 2018)

SUPPORTING VIDEOS

The following five videoclips support Figs. 1, 2 and 4.

- **VideoS1(.WMV)** This videoclip illustrates the dynamics of a colloidal cluster subjected to a clockwise rotating magnetic field with amplitude $B_0 = 1.5\text{mT}$ and frequency $\Omega = 125.7\text{rads}^{-1}$. The outer colloidal layer is rotated by the AOD in counter-clockwise direction at an angular velocity of $\omega_4 = -0.6\text{rads}^{-1}$. The video corresponds to the situation (b) in Fig.2 of the article.
- **VideoS2(.WMV)** This video shows a colloidal cluster where the inner magnetic trimer is subjected to a counter-clockwise rotating field of amplitude $B_0 = 0.65\text{mT}$ and frequency $\Omega = 125.7\text{rads}^{-1}$, while the outer particles are not rotated ($\omega_4 = 0\text{rads}^{-1}$). The video corresponds to the Fig.1 of the article.
- **VideoS3(.WMV)** This video shows a colloidal cluster where both the inner trimer ($B_0 = 1.25\text{mT}$, $\Omega = 125.7\text{rads}^{-1}$) and the outer layer ($\omega_4 = 0.4\text{rads}^{-1}$) are rotated in clockwise direction. The video corresponds to Fig.1 of the article.
- **VideoS4(.WMV)** This video shows a colloidal cluster where the outer particles are not rotated ($\omega_4 = 0\text{rads}^{-1}$), while the inner trimer is subjected to a counter-clockwise rotating field with $B_0 = 1.1\text{mT}$ and frequency $\Omega = 125.7\text{rads}^{-1}$. The video corresponds to Fig.4 of the article.
- **VideoS5(.WMV)** Videoclip showing a colloidal cluster with the inner trimer subjected to a counter-clockwise rotating field with $B_0 = 4.2\text{mT}$ and $\Omega = 125.7\text{rads}^{-1}$, while the outer particles are not rotated ($\omega_4 = 0\text{rads}^{-1}$). The video corresponds to Fig.4 of the article.

* ptieno@ub.edu