Electronic Supplementary Information for

Facile fabrication of thermo/redox responsive hydrogels based on a dual crosslinked matrix for smart on-off switch

Na Sun, Panpan Sun, Aoli Wu, Xuanxuan Qiao, Fei Lu* and Liqiang Zheng*

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.

Fig. S1 Swelling ratios of poly([NIPAM]_x-*co*-[VmimCM]_y) hydrogels.

Fig. S2 DSC curves of poly([NIPAM]_{2.5}-*co*-[VmimCM]_{0.15}) hydrogel (black), poly([NIPAM]_{2.5}*co*-[VmimCM]_{0.25}) hydrogel (red) and poly([NIPAM]_{3.0}-*co*-[VmimCM]_{0.15}) hydrogel (blue).

Fig. S3 The storage modulus (G') and loss modulus (G'') of poly([NIPAM]_{2.5}-*co*-[VmimCM]_{0.15}) hydrogels at 55°C.

Table S1 Dynamic rheology of $poly([NIPAM]_x$ -*co*- $[VmimCM]_y)$ hydrogels. The G', G'' values shown in the table are obtained from frequency sweep experiments at f=10 Hz.

Sample	G'/Pa	G"/Pa	(G'-G") /Pa (Elasticity)	G'/G" (Stiffness)
2.0-0.15	3554	207.2	3346.8	17.2
2.5-0.15	10250	480.4	9769.6	21.3
2.5-0.35	11640	351	11289	33.2
2.5-0.15 (no Fe ³⁺ added)	6219	319.4	5899.6	19.5
2.5-0.15 (55°C)	382200	28590	353610	13.4

Fig. S4 Stress-strain curves of compressive tests for poly([NIPAM]_x-*co*-[VmimCM]_y) hydrogels.

Table S2 Dynamic rheology of oxide and reduced $poly([NIPAM]_x-co-[VmimCM]_y)$ hydrogels. The G', G'' values shown in the table are obtained from frequency sweep experiments at f=10 Hz.

Samples	G'/Pa	G"/Pa	G'-G"/Pa	G'/G''	
			(Elasticity)	(Stiffness)	
2.0-0.25	3886	212.1	3673.9	18.32	
2.0-0.25	3394	359.6	3034.4	9.44	_
(after reduction)	n - Ritting				

Fig. S5 (a) Dynamic weight-deswelling behavior of reduced $poly([NIPAM]_x-co-[VmimCM]_y)$ hydrogels after the environmental temperature jumping abruptly from 25 °C to 55 °C; (b) the reversible swelling/deswelling behavior of the reduced $poly([NIPAM]_{2.5}-co-[VmimCM]_{0.15})$ hydrogel.

Fig. S6 The temperature-dependent conducting property for the reduced poly([NIPAM]_{2.5}-*co*-[VmimCM]_{0.15}) hydrogel.