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1 Orientation of MJPs at Planar Interfaces

Magnetic Janus particles adsorb at the oil-water interface in a preferred orientation with their MPA-
functionalized metal hemisphere in water and their PS hemisphere in oil. We confirmed the particles’
orientation using a combination of bright field and fluorescence imaging of MJPs adsorbed at a planar
decane-water interface (Fig. S1).
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Figure S1: (a) Spreading MJPs on a planar decane-water interface. (b) Combined bright field and fluores-
cence image of MJPs adsorbed at planar decane-water interface; scale bar is 50 µm

The particles were spread onto the decane-water interface following a literature protocol [1] (Fig. S1a).
First, water was added to a cylindrical glass cell mounted on a microscope slide. The top half of the glass
cell was treated with a hydrophobic silane to pin the water-decane contact line along a prescribed circular
boundary [2]. The volume of water was varied to achieve a nearly planar interface. MJPs were dispersed in a
7:3 mixture of water and isopropyl alcohol (IPA) and injected onto the water-air interface using a Hamilton
syringe. Decane was added, and the cell sealed by a glass cover slip using silicon grease.

The particles were imaged from below by an inverted microscope using a combination of bright field
and fluorescence imaging modes. Figure S1b shows a characteristic image of MJPs at the decane-water
interface. Particles appear dark when their metal hemispheres are oriented “down” toward the aqueous
phase and the microscope objective. Alternatively, particles appear bright when oriented “up” such that
their fluorescent core is visible. MJPs and small clusters thereof repel one another through electrostatic
dipole-dipole interactions to form stable configurations at the interface. Singlet particles are nearly always
oriented with their metal hemisphere “down” in agreement with previous reports [1] (Fig. S1b, bottom right).
Particle clusters, however, often contain individual particles in other orientations (e.g., the two doublets in
Fig. S1b, top right). The application of a uniform magnetic field directed normal to the interface (B = 15
mT) had no observable effect on the orientation of the adsorbed MJPs; the magnetic torques were much
smaller than those due to interfacial forces.
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2 Magnetic Rolling Experiments

To provide an independent estimate of the magnetic moment of the Janus particles, we quantified their
translational “rolling” motion above a solid planar substrate due to a rotating magnetic field [3]. As illus-
trated in Figure S2a, a rotating magnetic field in the xz-plane with magnitude B and frequency ω caused
the particle to rotate about the y-axis and simultaneously translate in x-direction. Figure S2b shows the
measured particle velocity V as a function of the applied frequency. The velocity increases linearly with
frequency up to some critical value ω∗, above which it begins to decrease.
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Figure S2: (a) A rotating magnetic field B(t) drives the rotation and translation of a magnetic Janus particle
along a solid wall. (b) Measured particle velocity V as a function of the applied frequency ω (markers). The
particle radius was a = 2 µm, and the field strength B = 1.7 mT. Error bars denote the standard error of
the measured velocity based on about 100 particles. The solid curve shows the predicted velocity of a ideal
ferromagnetic sphere with magnetic moment m = 3.1× 10−14 A m2.

This observed behavior is captured quantitatively by a model that accounts for the magnetic and viscous
torques acting on the particle and for the hydrodynamic coupling between particle rotation and translation
near the solid substrate [3]. Below the critical frequency, the particle’s magnetic moment rotates in lock
step with the applied field such that the angular velocity of the particle is equal to that of the field. At low
Reynolds numbers, the resulting particle velocity is given by

V = aω
Y B(ξ)

Y A(ξ)
for ω < ω∗, (S1)

where Y A and Y B are components of the hydrodynamic resistance tensor for a sphere separated from a
plane wall by a scaled distance ξ = δ/a [4, 5]. From the experimental data, the fitted slope of the particle
velocity versus applied frequency is 0.066 µm for a = 2 µm. Using these values, eq. (S1) implies that the
effective surface separation is ξ = 0.21. At the critical frequency, the viscous torque on the particle is equal
to the maximum magnetic torque such that

6πηa3ω∗Y C(ξ) = mB, (S2)

where the coefficient Y C describes the torque on a sphere rotating about an axis parallel to the surface [6]
(here, Y C = 1.69 for the estimated surface separation ξ = 0.21). Using the known viscosity (η = 8.90×10−4

Pa s) and field strength (B = 1.7 mT), eq. (S2) implies that the particle magnetic moment is m = 3.1×10−14

A m2.
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3 Characterization the Uniform Magnetic Field

We designed and built a two-coil electromagnet for manipulating MJPs on the stage of an inverted optical
microscope. Each coil was prepared by winding 131 m of copper wire with an insulating coating (24 AWG)
around a 3D-printed ABS scaffold with an inner diameter of 3.4 cm, outer diameter of 9.4 cm, and height
of 1.2 cm. The wrapped wire had an inner diameter of 3.6 cm, outer diameter of 9.3 cm, and height of 0.8
cm. The two coils were 1.8 cm apart from each other and placed above and below an acrylic sample holder
mounted on the microscope stage (Fig. S3a). The water drops on which the particles moved were positioned
at the center of the two coils. DC currents of 0.25 to 0.9 A were applied to the coils using a sourcemeter
unit (Keithely 2410). The resulting magnetic field was measured at different locations using a gaussmeter
(AlphaLab Inc. Model GM2). Figures S3b and S3c show the two components, Bz and Br, of the axially
symmetric magnetic field for an applied current of 0.9 A. Within the 0.4 cm3 region of interest (Fig. S3a,
red region), variations in the applied field were ca. 0.5% of the maximum field strength.
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Figure S3: (a) Schematic illustration of the electromagnet design. The center of the drop was located at
r = 0 cm and x = 0 cm during each experiment. The measurement region is colored in blue and the region of
interest in red. (b,c) Measured components of the magnetic field (b) Bz and (c) Br as a function of position
between the two coils. The component Br was measured along one direction perpendicular to the z-axis.
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4 Model of Particle Dynamics with Gravity

As in the main text, we consider an amphiphilic Janus sphere of radius a with permanent magnetic moment
m adsorbed at the interface of a spherical drop of radius R (Fig. 2). We now consider the effects of a gravi-
tational field pointing in the positive z-direction, parallel to the applied magnetic field B.1 Using a spherical
coordinate system centered on drop, the total energy of the particle in these two fields is approximated as

U = mB (cosβ sinα sin θ − cosα cos θ)−MgR cos θ, (S3)

where m and M are, respectively, the magnetic moment and buoyant mass of the particle, and g is the
acceleration due to gravity. From this expression, we derive the generalized forces that act to move and
rotate the Janus particle on the drop interface. In the overdamped regime, the resulting particle dynamics
are expressed as

θ̇ = − 1

λtR2

∂U

∂θ
= − mB

λtR2
(sinα cosβ cos θ + cosα sin θ)− Mg

λtR
sin θ, (S4)

β̇ = − 1

λr

∂U

∂β
=
mB

λr
sinα sinβ sin θ, (S5)

For small particles (a � R) with magnetic moments oriented parallel to the interface (α = π/2), the
orientation angle β relaxes quickly to a stable value of β = π. The dynamics of the particle position,
characterized by the polar angle θ, can be approximated as

θ̇ = km cos θ − kg sin θ, (S6)

where km ≡ mB/λtR
2 and kg ≡ Mg/λtR are characteristic rates due to magnetic and gravitational forces,

respectively. These dynamics are characterized by a stable particle position θs at which gravitational and
magnetic forces are balanced, θs = cot−1(kg/km). The system approaches this final position with a charac-
teristic rate constant k = (k2m + k2g)1/2. When the particle starts from the position of lowest gravitational
energy (θ(0) = 0), the approximate dynamics of eq. (S6) can be integrated to obtain

θ(t) = −2 tan−1
{
G−

√
G2 + 1 tanh

[
1

2
kt+ tanh−1

(
G√

G2 + 1

)]}
, (S7)

where G ≡ kg/km = MgR/mB is a dimensionless parameter characterizing the relative importance of
gravitational and magnetic forces. The projected radial position measured experimentally is r(t) = R sin θ(t).
Figure S4 shows the computed dynamics for different gravitational strengths G.

1It is only for mathematical convenience that the gravitational field is directed in the positive z-direction and not the
negative z-direction as in experiment. This choice confines the relevant particle motions to the region 0 < θ < π/2 (as opposed
to π/2 < θ < π).
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Figure S4: Projected radial position as a function of time for different gravitational strengths, G =
MgR/mB. Initially, the particle is positioned at gravitational energy minimimum θ(0) = 0. Here, the radial
position is scaled by the drop radius R; time is scaled using the magnetic rate constant km = mB/λtR

2.
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5 Data Analysis

5.1 Parsing Raw Track Data

As discussed in the main text, other forces acting on the MJPs can become significant when the magneto-
capillary forces are sufficiently weak. Even at the highest field strengths of B = 15 mT, magnetic forces
become progressively weaker as the particle approaches its equilibrium position at the drop equator. As a
result, particles were often observed to deviate from their expected radial trajectories near the drop equator
(Fig. S5). Such behaviors are not described by our magneto-capillary model and can interfere with our
estimate of the rate parameter km. The track data were therefore cropped to exclude these anomalous
portions of the particle trajectory.
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Figure S5: Three trajectories of a single MJP projected onto the xy-plane (red). The dashed circle shows
the perimeter of the drop centered on the black dot with radius R = 335 µm. Only the black portions of the
trajectories are used to fit the model parameter.

5.2 Parameter Estimation of km

To estimate the magnetic rate parameter km, we use the following model for the projected particle position
as a function of time,

x(t) = xo + r(t) cosϕ+ ε,

y(t) = yo + r(t) sinϕ+ ε.
(S8)

Here, (xo, yo) and ϕ are, respectively, the origin and the angle the radial trajectory, and ε is a normally
distributed random variable with zero mean and standard deviation ∆. The radial position of the particle
is given by

r(t) = R sin

{
2 tan−1

[
tanh

(
1

2
kmt+ C

)]}
, (S9)

where R is the drop radius, and C > 0 is a positive constant that specifies the radial position at time t = 0.
During each experiment, we measure the particle position (xk, yk) at successive times tk following the

application of the magnetic field. From these data D, we use Bayes theorem to estimate the probability
distribution for the unknown parameters X as

prob(X |D) ∝ prob(D |X) prob(X). (S10)

The posterior distribution, prob(X | D), is sampled using Markov Chain Monte Carlo (MCMC) in pyMC3
[7]. The likelihood function, prob(D | X), assumes that the observed quantities (xk, yk) are independent,
normally distributed random variables with unknown standard deviation ∆ due to measurement error. The
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prior probability distribution, prob(X), captures our knowledge of the unknown parameters before analyzing
the tracking data.

Specifically, the prior for the rate constant km is chosen as a log-normal distribution with parameters
µ = ln k′m and σ = 0.5, where k′m denotes the theoretical prediction. This choice implies that the rate
parameter is positive and within an order-of-magnitude of the model prediction. The prior for C is also
log-normal with µ = lnC ′ and σ = 0.5, where C ′ = 0.27 such that r(0) = 0.5R. The prior for the noise
∆ is log-normal with µ = ln ∆′ and σ = 0.5, where ∆′ = 1 µm. The drop radius R is measured from an
image focused on the drop equator using the Hough circle transformation in ImageJ. This procedure also
provides an estimate for the drop center (x′o, y

′
o), which differs somewhat from the origin of the radial particle

trajectories. The priors for xo and yo are normal distributions with standard deviation σ = 30 µm about the
measured drop center (x′o, y

′
o). The prior for the angle ϕ is also normal with standard deviation σ = π/4.

For each drop, particle, and field strength, we obtained several particle trajectories (typically, 3 to 9). The
rate parameter km, drop center (xo, yo), and noise ∆ were assumed to be common to all of these trajectories;
however, the constant C and the angle φ were allowed to vary one trajectory to the next (see Fig. S5).
The parameters were sampled from the distribution (S10) using 2000 iterations of the No-U-Turn Sampler
(NUTS) implemented in pyMC3. The mean values of the sampled parameters were used to collapse the data
shown in Figures 3a and 3c; the markers in Figures 3b and 3d represent mean values of the sampled rate
parameter.

5.3 Sedimentation

To assess the effects of gravity on the motion of MJPs, we first consider the sedimentation of the particles
along the drop interface in the absence of the magnetic field. Following the approach of section 4, the position
of a particle on the drop surface will evolve under gravity as

θ̇ = −kg sin θ, (S11)

where kg = Mg/λtR is the gravitational rate parameter. Note that this expression assumes that the
gravitational energy minimum occurs at θ = 0 (not θ = π as in our experiments); this difference does
not affect the projected radial position r = R sin(θ). Integrating eq (S11), we obtain the predicted radial
trajectory

r(t) = R sech(kgt+ C), (S12)

where C > 0 is a positive constant that determines the particle position at time t = 0.
Using this model, we analyzed the multiple trajectories of four different particles sedimenting along the

interface of four drops of different sizes (Fig. S6a-d). The model agrees with the data at early times, but
deviates significantly at later times as the particle begins to interact with the underlying substrate, the
three-phase contact line, and any other particles pinned there. Therefore, we focus our analysis exclusively
on the data in this early time period. Figure S7 shows that the inferred rate parameter kg decreases with
increasing drop size. Accounting for variability in the rate parameter from particle-to-particle (see discussion
below), the data agree with the model predictions. The buoyant mass inferred from the fit in Figure S7 is
M = 6.3× 10−15 kg, which is roughly two times smaller than the calculated buoyant mass 1.4× 10−14 kg.

5.4 Magnetic actuation with gravity

To assess the role of gravity in explaining our experimental observations, we analyzed the data from Figure
3 using the augmented model described Section 4. In this analysis, the gravitational rate parameter kg was
taken directly from our analysis of the sedimentation in Section 5.3. We used the same Bayesian MCMC
approach detailed in Section 5.2. Figure S8 shows the inferred rate parameter km accounting for effects due
to gravity force. Even at the weakest fields, the forces due to gravity are still much smaller than those due to
the magnetic field (G = 0.2� 1). Consequently, there is only a small change in the inferred rate parameter
as compared to that derived using the simpler model that neglects gravitational effects.
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Figure S6: Projected radial position as a function of time for four particles sedimenting along the interface
of four droplets of different sizes. The model fit (black curve) is based only on data at early times (green
line); the red line denotes the drop radius.

5.5 Variability in Rate Parameter

The variability in particle motions from one particle to the next was assessed using three independent
data sets. First and perhaps most directly, we examined the dynamics of multiple particles migrating
simultaneously on the same drop when subject to the applied field (Supporting Video 1).2 For each of the
six particles, we estimated the rate parameter km from the reconstructed particle trajectory as described
in Section 5.2. To facilitate the comparison of rate parameters for different conditions spanning orders of
magnitude, we will assume that variations in the rate parameter are log-normally distributed with parameters
µ0 and σ0. Taking the standard deviation of the logarithm of estimates for km, we estimate that σ0 = 0.55.

Additionally, we analyzed the data in Figure 3b and Figure S8 to provide additional estimates of the
particle-to-particle variability. Specifically, we modelled the rate parameters km in Figure 3b as log-normally
distributed with parameters µ1 = C1/R

2 and σ1, where R is the drop radius, and C1 and σ are unknown
constants to be determined by the fitting procedure. Similarly, we modelled the gravitational rate parameters
kg in Figure S8 as log-normally distributed with parameters µ2 = C2/R and σ2. Using Bayesian inference
with MCMC sampling, we derived the following estimates for the parameters σ1 = 0.47 and σ2 = 0.63. These
estimates are very similar to that obtained from multiple particles under identical conditions. Ultimately,
we conclude that the dynamics of different particles can vary by a factor of eσ = 1.7. Interestingly, this
conclusion applies to particle dynamics driven by magnetic fields and by gravity alone, which suggests that
the variations in the drag coefficient λt might be responsible (e.g., due to fluctuations in the three-phase
contact line [8].

2This video was captured in bright-field mode in contrast to the other videos we analyzed, which were captured using
fluorescence imaging.
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1

Figure S7: Gravitational rate parameter kg as a function of drop radius as infer from the data in Fig.
S6. Error bars denote the standard deviationf of the measured rate constant kg based on 3 to 19 particle
trajectories.

1

Figure S8: Magnetic rate parameter km inferred using a model that accounts for magnetic and gravitational
forces on the particle. Open markers shows the rate constants km from Figure 3, where gravity was not
considered.
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