Supplemental information

Metachronal motion of artificial magnetic cilia

Srinivas Hanasoge, Peter J. Hesketh, Alexander Alexeev George W. Woodruff school of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332

Video S1. The video shows a metachronal wave propagating from the left to right in an array of magnetic cilia with increasing cilium lengths. The cilia are actuated by a rotating permanent magnet. The short cilia on the left complete the cycle first followed by the longer cilia resulting in the formation of a wave propagating along the ciliary array. The cilia are $10\mu m$ in width, and 60nm in thickness. Cilia length changes between $60\mu m$ and $600\mu m$. The separation between neighboring cilia within a row is $50\mu m$. The actuation frequency is 0.5Hz.

Video S2. The video shows two metachronal waves propagating in opposite directions away from the center of a ciliary array. The array consists of short cilia in the center and longer cilia near the edge. The wave propagates outwards from shorter cilia to longer cilia. The cilia are $10\mu m$ in width, and 60*nm* in thickness. Cilia length changes between $60\mu m$ and $600\mu m$. The separation between neighboring cilia within a row is $50\mu m$. The actuation frequency is 0.5Hz.