Supporting Information

Separately enhanced dual emissions of amphiphilic

derivative of 2-(2'-hydroxylphenyl) benzothiazole by

supramolecular complexation

Chengfeng Wu, Yingzhi Jin, Dahua Li, Lan Ding, Yuzhi Xing, Kaicheng Zhang, and Bo Song*

College of Chemistry, Chemical Engineering and Materials Science Soochow University, Ren-ai Road 199, 907-1341, 215123 Suzhou, P. R. China E-mail: songbo@suda.edu.cn 1. The ¹H NMR and mass spectra of compounds.

Fig. S1 Partial ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of compound A.

Fig. S2 Electrospray ionization mass spectrum of compound **A**. Assignment of the main peak: m/z 243.05 [**A** + H]⁺.

Fig. S3 Partial ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of compound B.

Fig. S4 Electrospray ionization mass spectrum of compound **B**. Assignment of the main peak: m/z 357.14 [**B** + H]⁺.

Fig. S5 ¹H NMR spectrum (400 MHz, DMSO- d_6 , 298 K) of compound **C**.

Fig. S6 Electrospray ionization mass spectrum of compound **C**. Assignment of the main peak: m/z 491.10 [**C** + H]⁺.

Fig. S7 ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of **HBT-11**.

Fig. S8 Electrospray ionization mass spectrum of **HBT-11**. Assignment of the main peak: m/z 488.23 [**HBT-11** – Br⁻]⁺.

2. The four-level photo-cycle process

The ESIPT process requires an intramolecular hydrogen bond between the proton donor (-OH, - NH₂) and neighboring proton acceptor (-C= O, -N=) groups of the molecule. In the ground state, the enol-form is stable. Upon excitation, the redistribution of electronic charge results in fast proton transfer from the donor to acceptor via the intramolecular hydrogen bond, and the enol-form converted to keto-form (still excited state). The keto-form at excited state decay to ground state via irradiative (or non-irradiative) emission. Finally, the keto-form at ground state goes back to the enol-form via reversible proton transfer. The whole process involves four energy levels, and so called four-level photo-cycle process.

3. The photograph of powder

Fig. S9 Photograph showing the color of HBT-11 powder under illumination of 365 nm light.

4. The fluorescence spectra of different concentration for determination of CMC

Fig. S10 Concentration-dependent fluorescence spectra of HBT-11 in aqueous solution. Curves represent 0.08×10^{-4} , 0.1×10^{-4} , 0.2×10^{-4} , 0.4×10^{-4} , 0.6×10^{-4} , 0.8×10^{-4} , 1.0×10^{-4} , 1.5×10^{-4} , 2.0×10^{-4} , 2.5×10^{-4} , 3.0×10^{-4} , 3.5×10^{-4} , 4.0×10^{-4} (mol/L).

5. The Tyndall effect of compound C in cyclohexane

Fig. S11 The photograph of Tyndall effect for the cyclohexane solution of compound *C*.

6. The morphological change of HBT-11 upon addition of the two CDs

Fig. S12 The TEM images of (a) HBT-11 (4.0×10^{-4} mol/L), (b) HBT-11/ α -CD (1eq.), (c) HBT-11/ β -CD (1eq.).

7. The quantum yield of HBT-11 in different systems

Concentration	System	$\Phi_{ m F}$ (%)
$5.0 imes 10^{-5} ext{ mol/L}$	HBT-11	1.0
	$+ \alpha$ -CD	3.7
	$+\beta$ -CD	3.4
$4.0 \times 10^{-4} \text{ mol/L}$	HBT-11	1.1
	$+ \alpha$ -CD	4.1
	$+\beta$ -CD	3.4

 Table S1 Quantum yield of HBT-11 in different concentrations in the absence and presence of CDs.

8. The time-resolved fluorescence of HBT-11 in different systems

Fig. S13 Time-resolved fluorescence decays of HBT-11 in the absent and presence of α -CD and β -CD in aqueous solution.