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We present below some results from previous work for self-containedness (sections A and B), and calculations
explaining the results presented in the main text (sections C and D). Section C reports the bulk of our analysis. We
start by ground state features, before working out the harmonic expansion treatment leading to the free energy in the
crystal phase, from which thermodynamic properties and ionic profiles follow.

A. SERIES REPRESENTATIONS OF THE GROUND-STATE ENERGY

Taking the particle at point (0, 0) of plate 1 as a reference, the Coulomb interaction energy per particle of structures
I-IIT can be written as
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where the first sum corresponds to the interactions with particles on the same plate 1 and the second sum with
particles on plate 2. The background term cancels an infinite constant due to the slow decay of the Coulomb potential
at large distances.

The energy can be reexpressed in terms of a rapidly converging series by using the method presented in Ref. [1].
We rewrite the ground-state energy per particle as in Eq. (2.5). First, using the gamma identity
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(T' denotes the Gamma function) with v = 1, the X-function is expressed in terms of Jacobi theta functions with zero
argument [2] 03(q) = >_; ¢ and 61(q =2 q( 1) as follows
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Here, the effect of the background charge density on the plates is to subtract the singularity 7/t of the product of
theta functions as t — 0. Using the Poisson summation formula
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one can reduce the integration support to ¢ € [0,7]. Applying then once more the Poisson summation formula, the
Y-function can be expressed as a series in the generalized Misra functions (2.6):
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B. GENERALIZED MISRA FUNCTIONS

The first few generalized Misra functions z,(z,y) (2.6) with half-integer arguments are expressible in terms of the
complementary error function [2]

erfc(u) = % /Oo exp (—t%) dt, (S6)

as follows [3]:
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The case of the ordinary Misra functions z,(0,y) [4] should be understood in the sense of the limit z — 0,
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C. LARGE-COUPLING DESCRIPTION OF THE CRYSTAL PHASE
1. Harmonic expansion of the energy

Starting from a crystalline configuration, let us shift each particle ¢ at plate ¥; from its reference Wigner-lattice
position (2.3) to
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where the coordinate shifts z;, y; and z; are assumed to be small. Similarly, we shift the Wigner position (2.4) of
each particle at plate X5 to the one
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where now z;, y; and d — z; are assumed to be small.
If the particles i — (iy,%,) and j — (ju,J,) are localized on the same plate, either ¥ or X,, the change of the
Coulomb energy due to the particle shifts reads as
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If both particles are at plate 31, the expansion of § E;; in small deviations (z;, x;), (vi,y;) and (z;, 2;) is straightforward.
Since z; — z; = (d — z;) — (d — z;), the same holds for two particles being at plate X5 where the deviations d — z; and
d — z; are small. If particles ¢ and j belong to different plates, say ¢ € X1 and j € X, the energy change is given by
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In this case, we write z; — z; = —d + z; + (d — z;) and perform the expansion of the energy change in the small
quantities z; and (d — z;). The total energy is expressible as

E({r;}) = Neo(n,A) +6E,  6E =Y JEj;. (S13)
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Within the harmonic approximation, we expand every 6F;; up to quadratic terms in small deviations, supposing that
the ratios z;/a, y;/a, z;/a are small variables for particles i € ¥; and that x;/a, y;/a, (d — z;)/a are small variables
for particles i € ¥o. Many terms disappear because of the symmetry of the energy with respect to the reflection
transformations  — —x and y — —y. The final result for the energy change is Eq. (4.5) in the main text:
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The quantity S, involves all terms quadratic in variables z; if 1 € X1 and (J —z;) ifi € Yo,
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and the expansion coefficients in the (z,y)-plane are given by
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if particles ¢ and j belong to different plates.

2. Thermodynamics

To express In ), as a perturbative series in S, we introduce the counterpart of (4.11) for non-interacting (S, = 0)
particles in the external potential only:
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We have

In <C§((z])> = In(exp(S2))o, (S20)

where (---)o denotes the statistical averaging over the system of non-interacting particles defined by the partition
sum Q(ZO). The quantity In(exp(S;))o can be written as the cumulant expansion:
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where each term of the expansion is extensive, i.e. proportional to the particle number N. Restricting ourselves to
the lowest cumulant order, we obtain
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with d = d/pu = 1/(u\/a) = nv/27=. The evaluation of (S.)o/N yields:
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where F(A) corresponds to the lattice sum
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and the one-body averages

d y~~p _KkZ d ~7 —k(d—Z
(), = Jy dzzPe <(£lv— ) = Jo dZ(d —2)Pe (d-2) (525)
T D [Tdzedd
In particular, we shall need
~ d
(Zo=(d=2))o=—— = (S26)
erd — ]
~ 2 d(2 + )
(B = (@ -2 = & — H2tnd) (s27)
K K (e“d — 1)

To calculate the integral @, in (4.12), we respect the z-coordinate constraint (4.9) and rescale the particle a-
coordinates by the factor (27/Z)'/*/,/o to obtain
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where L o< Z1/4 goes to infinity in the large-Z limit. Here, going back to dimensioned lengths, a new relevant length
scale arises, a/ Z1/4. 1t is readily checked that it measures the amplitude of in plane z-fluctuations around a lattice
position. Incidentally, we note first that a similar scaling arises for the minimum of the pressure curves, in the regime
of like-charge attraction, that is largely met here [5, 6]. Second, this provides a new light on the melting criterion
alluded to above, where the critical coupling in the 2D-confined problem is around 15000. This yields a/ =214 ~ 0.09a,
a value close to Lindeman type of criteria [7]. To avoid the divergence of the consequent integral manifesting itself by

the invariance of ), _ j B (z — z7)? with respect to a uniform coordinate shift z; — z; + ¢, we shall make provision



for finiteness of the L-bound for a large but finite = and ignore the zero Fourier mode, see below. Omitting in (S28)
irrelevant prefactors we end up with the integral of Gaussian type
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According to Fig. 1, within the (z,y) plane we can represent the Wigner bilayer as the regular 2D lattice of
alternating white (belonging to plate ;) and black (belonging to ¥2) points, with the primitive translation vectors

=a(1,0),  B=3(LA) (S31)

and the surface of the elementary cell S = Aa?/2. The matrix elements A7; depend only on the distance of lattice
points 4,7 and therefore A* is an N x NN circulant matrix with known eigenvalue spectrum. Let us define the 2D
Fourier transform of any lattice function h;; = f(|r; —r;|) as follows
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where the N vectors q = (¢s,¢,) belong to the first Brillouin zone (BZ) of the reciprocal lattice with the primitive
vectors a*, B* defined by the relations
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and the surface of the BZ is given by S* = 872/(Aa?). Since the A%(q) with q € BZ are the N eigenvalues of the
matrix A*, we have
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the zero-mode being excluded. In the thermodynamic limit N — oo, the g-vectors cover uniformly the BZ defined by
the primitive vectors (S34) and we can write
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Now we want to express appropriately the Fourier component A”(2mq,/a,2mq,/(aA), the elements of the A”-
matrix being defined in terms of those of the B”-matrix [see formulas (S17) and (S18)] in Eq. (S30). We introduce
the auxiliary Fourier lattice functions
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Note that the previous lattice sum (S24) is expressible as F(A) = F(A,0). The Misra series representations of
F(A;q) and G(n,A; q) are given in Eqgs. (S61) and (S62) in section D, respectively. Introducing the function
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To evaluate the integral @, (4.13), we proceed analogously. The AY-matrix is defined by
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see Egs. (S17) and (S18) for the BY-matrix elements. In the thermodynamic limit we find that
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3. Particle density profile and pressure

We start from
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a functional of the generating Boltzmann weight w(r) = exp[—/u(r)], such that
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For our z-dependent density p(z) one can ignore harmonic modes along the (z,y) plane as well as w-independent
terms. After simple algebra, we find that

InZn[w] = gln [/A drw(r)e_"ﬂ”g] + gln [/A drw(r)e_”(‘f_z)] + %(Sz[w]ﬁh (S48)

where the functional (S, [w])o is given by Eq. (S23) with the moments redefined as follows
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Then the (rescaled) particle density can be represented as the WSC expansion

“(0) %1)
oz +— +- S50
) = 70 + = (550)
Since
0 Eln {/ drw(r)e“g} - Ne — = Nr e ¥ (Sh1)
Sw(r) 2 A et 2 [, dre 251 (1 _ efnd)

and N/(2Su) = 2nlgo?, we have in the leading WSC order
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The first correction to the particle density p!)(Z) is generated from (S.[w])o by using the functional derivatives of
the moments
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so that the electroneutrality condition is met.
Finally, the contact theorem for planar walls [8] relates the total contact density of particles on the wall and the
pressure. Within our notation, it is expressible as
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Writing the WSC expansion for the “contact” pressure as ISC = ﬁc(o) + ﬁc(l) / VE+ -+, we get
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and the first correction reads as
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D. SERIES REPRESENTATIONS OF CERTAIN LATTICE FUNCTIONS

The function F(A) defined by Eq. (S24) corresponds to a special case of F((A;q) introduced by expression (S38),
since FI(A) = F(A,0). This Fourier lattice sum can be written as the series
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The function G(n, A;q) defined by Eq. (S39) is expressible as the series
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