Supporting Information

Supramolecular platinum(II) complexes with highly efficient

monomer luminescence

Xiaorui Zheng,^{a, b} Binke Ning,^{*a, b} Chao Xue,^{a, b} Lieping Wang,^{*a, b} Wei Wang, ^{a, b}Kangyun

Liu, ^{a, b} Xiao-ying Huang^{a, b} and Yadong Liu^{a, b}

(^a State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an 710065, China; ^b Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, China, E-mail: bkn204204@126.com; 345760680@qq.com)

1. Materials and Instruments.

All reagents were used without further purification, or were prepared according to literature procedure. 1, 12-Dibromododecane (95%), N, N-Dimethyldodecylamine (98%) and Potassium tert-butoxide (98%) were purchased from J&K, 2-ethoxyethanol and (2, 4-difluorophenyl)boronic acid (98%) were purchased from TCI. The ultrapure water was purified by Aquapro ALH-6000-U.

¹H NMR Experiments

¹H NMR spectra were recorded on a 400 MHz Bruker spectrometer in $CDCl_3$ solutions, by using Me_4Si as internal standard. Chemical shifts were reported in ppm downfield from Me_4Si .

¹⁹F NMR Experiments

¹⁹F NMR spectra were recorded on a 500 MHz Bruker AV500 spectrometer in CDCl₃ solutions at room temperature (25 °C), by using CFCl₃ as external standard. Chemical shifts were reported in ppm downfield from CFCl₃.

ESI-MS Experiments

ESI-MS was recorded on a Bruker APEX II Fourier transform ion cyclotron mass spectrometerresonance.

UV-Vis Absorption Spectra Experiments

UV-vis absorption spectra were recorded by using an Agilent Technologies Cary 60 UV-Vis spectrophotometer.

Emission Spectra Experiments

Luminescence measurements were made on Edinburgh FLSP920 with a 450V xenon lamp as the excitation source and optical filter.

Luminescent Lifetime Experiments

Lifetime data were recorded following excitation EPL375 picosecond pulsed diode laser(Edinburgh instruments), using timer-correlated single-photon counting. The excitation wavelength of the pulsed laser used for performing lifetime measurements was 374.4 nm. Lifetime were obtained by tail fitting on the data obtained using single-exponential or double-

exponential model.

Quantum yield

Quantum yield was obtained with Quantaurus-QY C9920-03 and detector PMA-12, using excitation wavelength at 370 nm with a 450V Xenon lamp.

Fluorescence Microscope Experiments

Fluorescence microscope images were performed with Nikon ECLiPSE 80i. Upon excitation of these samples in water-methanol mixed medium at 330-380 nm, fluorescence microscope photos were taken. The samples in water-methanol mixed medium were prepared by taking a drop of the mixture solution on a glass slide and covered with a cover slip, and the fluorescence microscope photos were collected quickly. The samples at dry state were prepared by taking a drop of mixture solution on a glass slide and dried at room temperature.

Scanning Electron Microscope Experiments

SEM images were obtained with a QUANTA 600F. A drop of sample was placed on a silicon slice and dried at room temperature. No conductive cover was coated before the SEM images were collected.

The small angle X-ray Diffraction Experiments

The small angle X-ray diffraction experiments were obtained with a Bruker SMART APEX II instrument.

Atomic Force Microscope Experiments

AFM images were obtained with a 5400 PicoPlus, the type of the scanning probe is PPP-CONT-20, on contact mode. A drop of sample was placed on a silicon slice and dried at room temperature.

2. Synthetic route of FPtNC₁₂ complex

Scheme S1 Synthetic route of FPtNC₁₂ complex

1) Synthesis of complex 1, 2 and 3.

All of the intermediate compounds (complex 1, 2 and 3) had been successfully synthesized, and characterized by ¹H and ¹³C NMR spectra together with high-resolution electrospray ionization mass spectra by the literature methods.^{1,2}

2) Synthesis of FPtNC₁₂.³

Under a nitrogen atmosphere, complex **3** (0.307 g, 0.4 mmol, 1 eq) was dissolved in CHCl₃ (4 mL) followed by the addition of dodecyldimethyl ammonium bromide(1.4 g, 6.36 mmol, 15.5 eq). The reaction mixture was stirred at 35 °C for two days. After being cooled, the CHCl₃ was removed under reduced pressure, adding excess diethyl ether to get yellow precipitation, followed by washing the yellow precipitation with diethyl ether for several times. The compound was purified by flash chromatography (CHCl₃ / CH₃OH, v/v, 20/1), then was recrystallized by diffusing diethyl ether to the *FPtNC*₁₂ solution in CH₂Cl₂/CH₃OH to get yellow solid (0.214 g, 54% yield).

¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 0.88 (t, 3H, J = 8 Hz, CH_3CH_2), 1.25-1.43 (m, 36H, CH₃(CH_2)₉CH₂CH₂N⁺(CH₃)₂(CH₂)₉(CH_2)₉), 1.69 (m, 4H, $CH_2CH_2N^+(CH_3)_2CH_2CH_2$), 2.14 and 2.16 (2s, 6H, $CH_3COCHCOCH_3$), 2.32 (t, J = 8 Hz, 2H, $CH_2(CH_2)_{11}N^+(CH_3)_2(CH_2)_{11}CH_3$), 3.39 (s, 6H, CH₂N⁺(CH_3)₂CH₂), 3.47-3.53 (m, 4H, $CH_2N^+(CH_3)_2CH_2$), 6.53-6.59 (m, 1H), 7.07-7.12 (m, 2H), 7.82 (t, J = 8 Hz, 1H), 7.95 (d, J = 8 Hz, 1H), 8.97 (d, J = 8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, Me₄Si): δ 184.62, 182.21, 164.78 (d, J = 7 Hz), 160.93 (d, J = 10 Hz), 158.34 (d, J = 13 Hz), 148.77, 144.62 (d, J = 8 Hz), 138.32, 128.13, 121.80 (d, J = 17 Hz), 120.88, 111.95, 98.73 (t, J = 26 Hz), 63.70, 50.98, 31.70, 30.82, 30.72, 29.71, 29.45, 29.40, 29.35, 29.27, 29.25, 29.27, 29.20, 29.13, 29.04, 29.02.

¹⁹F NMR (470 MHz, CDCl₃): -106.956(d, 1F, J = 9.4 Hz), -112.254(d, 1F, J = 9.4 Hz). HR-ESI-MS m/z : calcd [C₄₂H₆₇F₂N₂O₂Pt]⁺: 864.4817; found 864.4830.

3. Spectrum Analysis

Figure S2 The ¹³C NMR of complex **FPtNC₁₂**

Figure S4 The HR-ESI-MS of FPtNC₁₂

3. Self-assembly of FPtNC₁₂

Solution Preparation

The concentration of **FPtNC₁₂** solution was maintained at 2×10^{-4} M (V_{water} : V_{methanol} = 100 : 3). The complex **FPtNC₃** was first dissolved in methanol, and then adding deionized water into the methanol solution to give a yellow solution (2×10^{-4} M, V_{water} : V_{methanol} = 100 : 3). Assemble and some measurements were repeated to ensure the reproducibility. All the measurements are made in air-equilibrated condition.

Figure S5 (a) Absorption and (b)emission spectra of **FPtNC₁₂** in dichloromethane solution (2×10⁻⁴ M). The triplet absorption transitions are shown in the insert. λ_{exc} = 370 nm

Figure S6 The excitation spectra of the **FPtNC₁₂** solution in water and methanol (V_{water} : V_{methanol} =100 : 3) (red trace: emission=650 nm, black trace: emission=467 nm)

Figure S7 (a) (b) Emission, (c) Absorption and (d) Excitation spectra of the **FPtNC**₁₂ solution at the concentration range from 1×10^{-6} M to 2×10^{-4} M (λ_{exc} = 370 nm, emission=650 nm, the sharp peak observed at 740 nm corresponds to the second order transmission of the monochromator.)

Figure. S8 (a,b) SEM images of the yellow solution of **FPtNC₁₂** on the silicon substrate after the mixed solvent evaporated.

Figure S9 (c) emission spectra of the microcrystal from a drop of the suspension of FPtNC₁₂ after the solvent evaporated on a quartz substrate. (λ_{exc} = 370 nm).

Figure S10 Room temperature transient PL decays of microcrystal of **FPtNC₁₂** on microsecond time scale after excitation using light at 374.4 nm. (Tave=(A1*T1^2+A2*T2^2)/(A1*T1+A2*T2), A1=1255.320, T1=725.8207, A2=874.303, T2=2041.9937)

Figure S11 The small angle X-ray diffraction (XRD) pattern of the microcrystal from the suspension of **FPtNC₁₂** after the solvent evaporated.

Figure S12 (a, b) SEM images of the dried state of the FPtNC₃ solution (2×10⁻⁴ M, V_{water} : $V_{methanol} = 100:3$) on the silicon substrate.

References:

- 1 (a) J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau and M. E. Thompson, *Inorg. Chem.*, **2002**, *41*, 3055. (b) P. T. Furuta, L. Deng, S. Gaton, M. E. Thompson, and J. M. J. Ftrchet, *J. Am. Chem. Soc.* **2004**, *126*, 15288-15389;
- 2 X. Zheng, H. Wang, Y. Li, RSC Adv., 2016, 6, 88174-88178;
- 3 W. Park, D. Yu, K. Na, K. E. Jelfs, B. Slater, Y. Sakamoto, R. Ryoo, *Chem. Mater.* **2011**, *23*, 5131–5137