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Derivation of the Many-Body Depletion Interaction for Large Rg 

Eq.(8) (in the main text) with the specified boundary conditions is analogous to an 
electrostatic problem in the presence of a screening electrolyte (with a Debye length 
equal to Rg) and can be solved using standard Green’s function methods,1 

   

�̂�(𝑟𝑖;Γ) = 1 + ∮
𝑆𝑖

𝑑�̂�𝑖𝐺𝑜(|𝑟𝑖 ‒ 𝑅𝑆 �̂�𝑖|)Λ𝑖(�̂�𝑖) +
𝑁

∑
𝑗 ≠ 𝑖

∮
𝑆𝑗

𝑑�̂�𝑗𝐺𝑜(|𝑟𝑖 ‒ 𝑅𝑖𝑗 ‒ 𝑅𝑆 �̂�𝑗|)Λ𝑗(�̂�𝑗)

                                                                                            (S1)

where,  is the vector with origin at the ith sphere,  is the unit vector centered at the jth  𝑟𝑖 �̂�𝑗

sphere, which is integrated over all orientations and Rij is the vector pointing from sphere 
i to sphere j. G0(r) is a Green’s function for the Helmholtz equation in free space 

(S2)∇2�̂�0(|r - r'|) ‒ 𝜆2�̂�0(|r - r'|) = 𝛿(r - r')

where  and 𝜆 = 1/𝑅𝑔

(S3)�̂�0(r) = 𝑒𝑥𝑝⁡( ‒ 𝜆𝑟) 4𝜋𝜆𝑟

which propagates chain density fluctuations in the fluid with the expected correlation 
length of Rg. The surface “polarizations”, Λj, describe the effect of the fixed spheres on 
the fluid, and are determined self-consistently so as to satisfy Eq.(9). Using the following 

expansions in spherical harmonics, 𝑌
𝑙

𝑚(�̂�),
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we can substitute into Eq.(S1) to obtain the following 

�̂� 𝑙
𝑚(𝑟𝑖) = 4𝜋𝛿𝑙
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         (S6a)

where

  (S6b)Γ𝑙𝑚(𝑥) = 𝜆Λ 𝑙
𝑚(𝑥)𝑖𝑙(𝜆𝑅𝑆)

           (S6c)
𝐺

𝑙𝑚,𝑙'𝑚'(𝜆𝑅) = ∑
𝐿𝑀

𝑘𝐿(𝜆𝑅) 𝑄
𝑙𝑙'𝐿

𝐶(𝑙𝑙'𝐿,000)𝐶(𝑙𝑙'𝐿,𝑚𝑚'𝑀)𝑌 𝐿
𝑀(�̂�)

 is the Kronecker delta function, C (l1l2l, m1m2m) is a Clebsch–Gordan coefficient,𝛿𝑙
0

          
𝑄𝑙1𝑙2𝑙 = ( ‒ 1)

𝑙2 4𝜋[
(2𝑙1 + 1)(2𝑙2 + 1)

2𝑙 + 1
]

1
2

 (S6d)

and kl(x) and il(x) are the modified spherical Bessel functions of the first and second kind 
respectively. Eqs (S6 a-d) were obtained using 1- and 2-centre expansions for the 
Yukawa function.1,2  

For large Rg we make the approximation that all but l =0 terms can be set to zero. 

As we discuss later, this follows from the fact that and correlations become �̂�0(r)~𝑅𝑔 𝑟 

exceptionally long-ranged making the surface polarizations less sensitive to the specific 
configurations of the spheres in the local environment. As a consequence, the surface 
polarization is slowly varying over the surface of a particle.  Thus, we make a spherical 
approximation to obtain,2

        (S7)    
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Furthermore, given that the local environment about each sphere becomes relatively 
insensitive to the specific configuration of the surrounding spheres within the distance Rg, 
the surface polarizations  (for typical particle configurations) are only expected to Γ00(𝑖)

vary on a length scale of Rg, which allows us to make the following local 
approximation,2



         (S8)
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Eq.(S8) can be solved at the sphere surfaces, using the boundary condition, Eq.(9) in the 
main text to give, 

                                                  (S9)
Γ00(𝑖) =‒ 4𝜋(𝑘0(𝜎) + 𝑖0(𝜎)
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where we have defined  and   𝜎 = 𝜆𝑅𝑆 𝑘0(𝑥) = 𝑒𝑥𝑝⁡( ‒ 𝑥) 𝑥.

Using Eq.(5) in the main text we can re-express the volume integral in Eq.(6) in 
terms of  and convert this to a surface integral of  at each particle ∇2�̂�(𝑟;Γ) ∇�̂�(𝑟;Γ)
surface. Assuming only spherical (l = 0) terms are non-zero, the radial derivative of 

 at the sphere surfaces can be obtained from Eq.(S8).  Finally using Eq.(S9) we �̂�0
0(𝑟𝑖)

obtain the following (large Rg) form for the total POMF, which is equivalent to Eqs.(7-9).
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where the 1-body insertion term is

              (S11)
𝛽𝜔(1) =  4𝜋𝑅 3𝑔Φ𝑐ℎ𝑎𝑖𝑛{𝜎 +  𝜎2 +  𝜎

3

3}
The second term in Eq.(S10) is the total many-body contribution to the depletion 
interaction. 

The so-called spherical and local approximations leading to Eq.(S9) and hence 
Eq.(S10) can be justified, by showing that the effective Hamiltonian Eq.(S10) between 
the particles lead to self-consistent solutions for  , as given by Eq.(S9).  To do this Γ00(𝑖)

we rewrite the many-body term after subtracting the 1-body contribution in Eq.(S9), 
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where 



          (S13)�̂�0(𝜆𝑅) = 𝑅 ‒ 3
𝑔 𝑘0(𝜆𝑅) 

We shall assume that bulk conditions give a fixed value for  for all Rg.  The 𝑅 2𝑔Φ𝑐ℎ𝑎𝑖𝑛

function  has the form of a weak long-ranged Kac pair potential.3 A system that �̂�0(𝜆𝑅)

interacts via such a potential (in addition to a hard sphere interaction) is known to have a 
mean-field generalized van der Waals form in the limit where the range of the potential 
(in our case ) becomes infinite.4-7    We conjecture that the particles interacting via the 𝑅𝑔

many-body potential Eq.(S12) behave similarly to one with pair potential, Eq.(S13).  
This is because the term in square brackets in Eq.(S12) will remain finite as Rg grows.   
For a system with a pair potential given by Eq.(S13) at large Rg, sums of the type 

 can be replaced by their mean-field form (for particle configurations that 

𝑁

∑
𝑘 ≠ 𝑖

�̂�0(𝜆𝑅𝑖𝑘)

contribute significantly to the partition function). That is, 

(S14)
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�̂�0(𝜆𝑅𝑖𝑘) ≈  4𝜋𝜌𝑆

∞

∫
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𝑑𝑅𝑅2  �̂�0(𝜆𝑅) =  4𝜋𝜌𝑆 𝑒 ‒ 2𝜎(1 + 2𝜎)

Considering Eq.(S12) we  find that replacing the sum in the denominator with the RHS 
of Eq.(S14) means that the term in square brackets approaches a finite constant, in the 
limit , and the Hamiltonian does indeed have a Kac form of the type shown in 𝑅𝑔⟶∞

Eq.(S13).  This is consistent with our initial conjecture that the many-body potential 
produces the same mean-field thermodynamics as the pair potential, Eq.(S13).   While 
this is not a rigorous proof, but merely a plausibility argument, this hypothesis is strongly 
supported by the very good agreement between the mean-field theory and simulations 
using the  complete many-body potential, as shown in the main text, see Figure 1(b). 

The argument leading to Eq.(S14), means that the local approximation , which 
gives rise to Eq.(S9) provides an accurate self-consistent solution for the set of  

, for large , as all sums, ,  are approximately equal over a {Γ00(𝑖) 𝑖 = 1,𝑁} 𝑅𝑔

 
𝑁

∑
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�̂�0(𝜆𝑅𝑖𝑘)

length scale of  for the important particle configurations.  To show that no higher 𝑅𝑔

moments (l >0) need be considered, we note that the contributions to the surface 
polarizations at particle i, due to all other particles j is given by the second term on the 
RHS of Eq.(S1) 

            (S15)
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𝑆𝑗

𝑑�̂�𝑗𝐺𝑜(|𝑟𝑖 ‒ 𝑅𝑖𝑗 ‒ 𝑅𝑆 �̂�𝑗|)Λ𝑗(�̂�𝑗) ≈  Λ0
0(𝑖)

𝑁

∑
𝑗 ≠ 𝑖

𝑘𝑜(𝜆|𝑟𝑖 ‒ 𝑅𝑖𝑗|)/4𝜋

where the RHS of Eq.(S15) is the contribution due to monopole terms and the local 

approximation has been used, also recall   In the limit of large Γ00(𝑥) = 𝜆Λ0
0(𝑥)𝑖0(𝜆𝑅𝑆).

Rg, our previous arguments imply that the sum on the RHS is essentially independent of 
almost all configurations of importance and therefore is constant over the surface of the 



sphere at i.  This implies the asymmetric contributions generated by the monopole terms 
are small and all   (l>0) can be set to zero.Γ𝑙𝑚(𝑥)
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