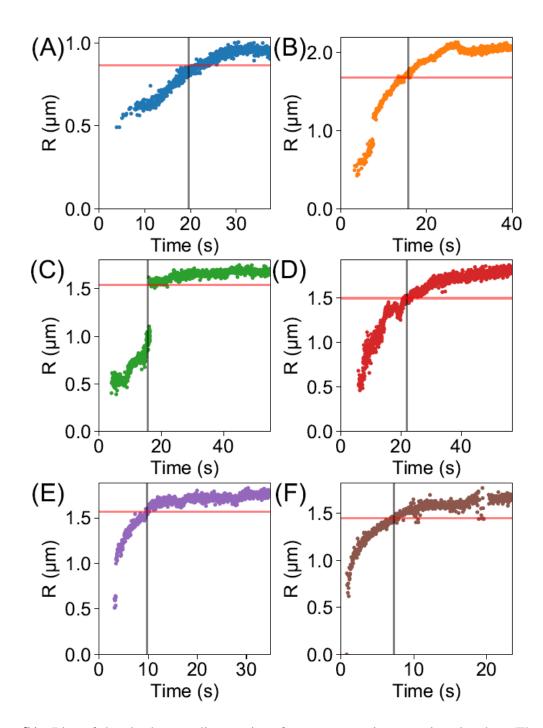
Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Growth dynamics of surface nanodroplets during solvent exchange at varying flow rates


Brendan Dyett,^a Akihito Kiyama,^b Maaike Rump,^c Yoshiyuki Tagawab^b Detlef Lohse^c and Xuehua Zhang^{dac}

^aSoft Matter & Interfaces Group, School of Engineering, RMIT University, Melbourne, VIC 3001

^b Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16 Koganei, Tokyo 184-8588, Japan.

^cPhysics of Fluids group, Department of Science and Engineering, Mesa+ Institute, J. M. Burgers Centre for Fluid Dynamics and the Max Planck Twente Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

^d Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G1H9, Canada

Figure S1. Plot of droplet base radius vs time for representative growing droplets. The flow rates were (A) 25 μ l/min (blue), (B) 35 μ l/min (orange), (C) 50 μ l/min (green), (D) 75 μ l/min (red), (E) 100 μ l/min (purple), (F) 150 μ l/min (brown). $0.9R_{max}$ and the time taken to reach $0.9R_{max}$ are shown by the red and black lines, respectively.