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1 Volume fraction

The volume fraction (φ) of the gelatin component can be calculated based on the measured mass of the gelatin
(mgelatin) and water (mwater), and the density for gelatin (ρgelatin = 1.35g/cm3) and water (ρwater = 1.00g/cm3).

φ =

mgelatin

ρgelatin

mgelatin

ρgelatin
+ mwater

ρwater

(1)

2 Elastic modulus

2.1 Shear modulus of gelatin from CMT

From CMT, we can obtain the plane-strain elastic modulus, E = Ē(1−ν2) (assuming an incompressible elastic solid,
ν = 0.5). This is easily obtained by relating the stiffness from the load (p) vs. displacement (δ) plot,

∆p

∆δ
= 2Ēa (2)

From Eq. (9.37) of Rubinstein & Colby1, we can derive relationships between shear modulus and polymer network
dimensions. Specifically, the shear modulus (µ) is related to the polymer volume fractions (φ0, φ) and the average
number of monomer units per chain (N). For a polymer network that is swollen in a good solvent (T > θ) and
θ-solvent (T = θ),

µ ≈
kBT

a2ξ
(3)

a is the diameter of the Edwards tube and a2ξ is the occupied volume of either a network strand of an unentangled
network (N < Ne) or an entangled network (N > Ne), thus,

a2ξ ≈

{

ξ3 for T > θ,N < Ne

a21φ
−

4

3 ξ for T = θ,N > Ne
(4)

where a1 is the Edwards tube diameter in the melt state. Recall from the manuscript that,

ξ ≈







RF

(

φ∗

φ

)
3

4

= b
(

v
b3

)

−
1

4

φ−
3

4 for T > θ

bφ−1 for T = θ
(5)

Substituting Eq. (3) and Eq. (4) into Eq. (2) yields,

µ ≈ µo

{

φ
9

4 for T > θ,N < Ne

φ
7

3 for T = θ,N > Ne

(6)

For an isotropic material, the shear modulus is related to the Young’s modulus (E) by the Poisson’s ratio (ν),

E = 2(1 + ν)µ (7)

In other words, Ē scales similarly with the polymer volume fraction.
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3 Fracture energy

3.1 Determination of energy release rate from CR

From CR, we can measure the critical pressure (Pf ) when a flaw grows into an unstable crack of infinite size2,

Gc
∼=

3P 2
f r

πE
(8)

Once E is quantified and r is measured, we can use Eq. (14) to quantify Gc.

3.2 Lake-Thomas fracture theory for gels

Gc has been empirically shown numerous times that it is a testing rate-dependent quantity. The generic form for
elastomers is,

Gc = Go(1 + Φ(aTV )) (9)

Eq. (9) assumes that 1) chain scission occurs and 2) the material ahead of the crack tip experiences a range of strain
rates across its entire relaxation spectrum thus the assumption of bulk viscoelasticity (WLF shift factor, aT ) is the
appropriate mode of energy dissipation here.

For gels whose fracture behavior can be considered as non-dissipative, we can use the Lake-Thomas theory to describe
the fracture of gelatin. According to the Lake-Thomas theory, the zero-rate energy release rate (Go) (according to
H. Xin et al.3) is defined as,

Go = NΓU (10)

where N is again the number of monomers that make up a polymer chain that is loaded in tension prior to fracture,
Γ is the areal density of polymer chains that crosses the crack plan per area of crack, and U is the bond dissociation
energy (J/mol.). In comparing Eq. (9) and Eq. (10), Gc(V = 0) ∼= Go.

N and Γ are the parameters that scale with gelatin concentration and solvent quality. As suggested by Baumberger
et al.4,

Γ ∼=
1

ξ2
(11)

From Eq. (6) and Eq. (8) of Obukhov et al.5, N is related to φ as,

N ≈

{

φ−
5

4 for T > θ,N < Ne

φ−
4

3 for T = θ,N > Ne

(12)

Substituting Eq. (5), Eq. (11), Eq. (12) into Eq. (10) yields,

Gc ≈ ΓNU ≈
U

b2

{

(1− 2χ)
1

2φ
1

4 for φ ≤ φe

φ
2

3 for φ > φe

(13)

pg. 2 of 6



Supplementary Information

3.3 Poroelastic-type fracture of gels

For gels that display dissipative fracture behavior such as viscoelasticity or poroelasticity, rate dependent effects
can play a significant role. Previously, Baumberger and coworkers4 showed that gelatin gels undergo viscoplasticity
during fracture. This viscoplastic process is a poroelastic-type process since the authors used Biot’s theory of poroe-
lasticity for gels to derive the relevant relationships, and we will refer this mechanism of fracture in gelatin gels as a
poroelastic fracture process.

Specifically, the fracture energy (Gvis) is related to the hydrodynamic friction of the gelatin chains being pulled
out of the network junctions and then traversing across effective ”tubes” formed by the gelatin mesh network. The
dimensions of these ”tubes” is defined by the mesh size (ξM ) of the gelatin network. The stress at the crack tip is
defined as,

σtip ≈ σo + σvis (14)

We can safely assume that the gelatin/water motions are diffusive, thus the pull-out of the chain across the mesh
can be described as poroelasticity, i.e. motion of the chain relative to fluid motion. Therefore, we can approximate
σvis as,

σvis ≈ l∇P (15)

where l is the contour length of the gelatin chain and ∇P is the pore pressure in Darcy’s law. According to Darcy’s
law, the pore pressure is related to the volumetric flow rate (J) and mesh size according to the following,

J = −
ξM

2A

η
∇P (16)

Here, A is the total area of permeation and η is the fluid viscosity. Note that this flux is the fluid flux but we are
interested in the motion of the gelatin chains, which means the sign should be the opposite, which implies this is
a cooperative exchange process between the solvent and the polymer chain. Additionally, this derivation assumes
dilute/semi-dilute solution conditions. If the polymer chains were entangled, l is likely not the relevant length-scale
since polymer reptation has to considered. Thus this model should not be applicable for entangled polymer gels.

We don’t have direct information about J but we can approximate it using an average chain pull-out velocity, δ̇ = βV .
In other words, we will assume that,

J

A
≈ δ̇ (17)

Substituting Eq. (20) and Eq. (21) into Eq. (19) yields,

σvis ≈ βηV
( l

ξM 2

)

(18)

The fracture energy expression is defined by Eq. (9). For this poroelastic fracture model, the relationship is,

Gc ≈ Go +Gvis (19)

where Gvis = σvisl accounts for the energy dissipation due to viscoplasticity. Both terms in Eq. (19) are derived
based on a Dugdale-type fracture model. The expression for Gvis is,

Gvis ≈ βηV
( l

ξM

)2

(20)

In terms of φ when φ ≤ φ∗,

Gvis ≈ βηV
( l

b

)2

φ
3

2 (21)

In Biot’s theory of poroelasticity, the hydraulic permeability for a polymer gel is the mesh size (ξ2M ), which is related
to the materials properties of the gel as,
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ξM
2
≈

ηDc

µ
(22)

Substituting Eq.(??) into Eq.(24),

Gvis
∼=

βV l2

Dc

µ (23)

If we assume that Dc is independent of the polymer concentration, which is one of the assumptions in Biot’s theory
of poroelasticity6, Eq.(23) implies that Gvis is directly correlated with µ. Experimental results suggest that Dc is
primarily concentration independent at low to moderate polymer fraction7,8.

Since we know the scaling relationship between µ and ξ, Eq.(23) becomes,

Gvis
∼=

kBTβV l2

Dcξ3
(24)

In relation to φ,

Gvis
∼=

kBTβV l2

Dcb3
φ

9

4 (25)

We note that the derivation to this poroelastic-dominated fracture mechanism is only valid according when φ < φe.
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4 Kratky Plots
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Figure S1: Kratky plots (Q2I(Q) vs. Q) of the gelatin gels.
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