
Supplemental information for
Thermal Molecular Focusing: Tunable Cross effect of Phoresis and Light-driven

Hydrodynamic Focusing

Tatsuya Fukuyama1, Sho Nakama1 and Yusuke T. Maeda1,∗
1Kyushu University, Department of Physics, Motooka 744, Fukuoka 819-0395, Japan and

∗corresponding address: ymaeda@phys.kyushu-u.ac.jp

I. THEORETICAL DETAILS� �
A. Heat conduction in polymer solution� �

One of fundamental novelty of this study, compared to
previous studies, arises from high thermal insulation of
PDMS boundary wall. Its thermal conductivity is 0.15
W/(mK) much smaller than water with 0.59 W/(mK). In
this combination of materials, the heat by infrared laser
focusing diffuse in an aqueous phase although PDMS wall
plays a role of heat sink but it’s radiation ability is low.
On the other hand, when the aqueous phase is enclosed in
a glass with higher thermal conductivity of 1.00 W/(mK)
larger than both water and PDMS, the heat transfer is
dominantly occurred from water to glass so that the heat
dominantly diffuse to z axis, which means the shape of
temperature distribution is insensitive to the speed of a
moving laser spot. However, heat conduction in lateral
direction along the traveling laser spot has to be consid-
ered for our experimental system (FIG. S1).
Suppose that the spot of heat source is built in two-

dimensional space X = (x, y) and moves at constant
speed ul in x axis. The thermal field due to the mov-
ing heat spot is described by the equation of thermal
conductivity

Cv
∂T

∂t
− λh∇2T = P − h∆T, (1)

where Cv is heat capacity and λh heat conductivity, P is
the source of heating spot, h the coefficient of heat sink.
The equation is invariant with ∆T instead of T , we can
rewrite

Cv
∂(∆T )

∂t
− λh∇2(∆T ) = P − h∆T. (2)

In the moving frame of the heat spot, the coordinate
and the derivative functions are converted as

x′ = x− ult (3)

∂

∂t
= −ul

∂

∂x′ (4)

∇2 =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂x′2 +
∂2

∂y2
= ∇′2 (5)

The shape of laser spot could be given by P =
P0 exp[−(x′2 + y2)/(2b2)] with the spot radius b.

To solve thermal diffusion equation, we perform spatial
Fourier transform of temperature difference ∆T and P by

∆T (x′, y) =
1

2π

∫ ∞

−∞
dkT̂ (k)eik·X

′
, (6)

P (x′, y) =
1

2π

∫ ∞

−∞
dkP0 exp

(
−b2k2

2

)
eik·X

′
. (7)

By solving thermal diffusion equation after substitution
with transformed variables, T̂ (k) is given by

T̂ (k) =
P0

λhk2 − iCvul · k + h
exp

(
−b2k2

2

)
. (8)

We then carried out inverse Fourier transform of T̂ (k)
numerically and obtained thermal field at various ul at
the moving frame. The unsteady thermal fields are char-
acterized by one physical parameter, the frequency of
repetitive thermal stimuli fl = ul/L. FIG.S2 shows that
thermal fields build by the heat spot that moves at fl =0
Hz, 10 Hz, 102 Hz, and 103 Hz. The maximal temper-
ature difference is ∆Tmax = 9.6 K for a steady thermal
field. As the speed of moving heat spot increases, the
magnitude of ∆T decreases because the duration time
for heating aqueous solution, which is typically 2b/ul, be-
comes shorter for larger ul. The reduced duration time
leads the reduction of heat at arbitrary position.� �

B. Heat penetration into PDMS walls� �
A heated polymer solution has the finite temperature

difference of ∆T = T − T0 to the PDMS wall since the
temperature of a PDMS wall at the infinity is constant at
T0. The diffusion of heat occurs from the polymer solu-
tion to the PDMS wall. This heat transfer is important
to estimate thermal compression of bulk polymer solu-
tion because the depth of this heat conduction decides
the strain in the PDMS boundary, as shown later. For
this aim, we analyze the penetration depth of transferred
heat, which is described by l0, according to thermal dif-
fusion in a PDMS substrate. Thermal field within PDMS
∆T ′ is described as below

Cw
v

∂(∆T ′)

∂t
− λw

h∇2
z(∆T ′) = h∆T ′, (9)

where Cw
v is the heat capacity of PDMS, λw

h the heat
conductivity of PDMS, and h is heat transfer coefficient
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(a) (b)

FIG. S1. Schematic illustrations of (a) the reference frame in a moving thermal gradient and (b) the thermal diffusion and sink
in the reference frame.
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FIG. S2. Numerical simulation of temperature distribution at various speeds of heat wave propagation. Frequency of repetitive
thermal stimuli is defined as fl = ul/L with the propagation speed of heat wave ul and the length of scanning path L. (a to
e) Temperature distribution in the moving frame at fl=(a) 0 Hz, (b) 1 Hz, (c) 10 Hz, (d) 100 Hz, (e) 1000Hz. (f) Maximal
temperature difference ∆Tmax is plotted as frequency of heat wave.

across the surface of PDMS[6][7]. The term of h∆T ′ rep-
resents the transferred heat from the polymer solution,
which plays a role of the heat source for PDMS. At the

steady state (∂∆T ′

∂t = 0), since the acquired heat from the
polymer solution diffuse through the PDMS substrate,
the heat diffusion of λw

h∇2
z(∆T ′) is comparable to h∆T ′.

Approximating ∇z ∼ 1/l0, we can estimate the penetra-
tion depth of heat into the PDMS wall as

l0 ∼
√

λw
h

h
. (10)

For PDMS, typical parameters have been known
as λw

h=1.5×10−7 W/(µm·K)[6] and h=5.0×10−10

W/(µm3·K)[7], and we can estimate l0 ≃ 17µm. This
penetration depth of heat is comparable to the thickness
of bulk fluids (thickness of the chamber), d=25 µm.� �

C. Thermal expansion of boundary walls by
heat spot propagation� �

The aqueous polymer solution was enclosed with the
flexible boundary walls whose substrate is polydimethyl
siloxane (PDMS) being deformed upon the exposure of
a thermal stimuli. The moving laser spot, that moves

at a constant speed ul = ulex = (ul, 0) in x axis, heats
water solvent and the temperature of polymer solution
∆T (x, y) is increased locally. In this occasion, thermal
expansion of the solution of 5.0wt% PEG is negligible
because of the incompressibility of fluids. The conducted
heat thereafter reaches the boundary walls at bottom
and ceil and the PDMS substrates thermally expands.
increase the temperature of PDMS walls. Thus, the ex-
pansion of the flexible boundaries subject to laser heat-
ing generates the mechanical force to drive the fluid flow.
The continuum equation for the volume of aqueous solu-
tion V (x, t) is

∂V

∂t
+∇ · (V u) = 0, (11)

where ∇ = ∂
∂xex + ∂

∂yey and u = (u, v) is the flow in-

duced by thermal expansion of the wall. At the reference
frame of the heat spot, we can rewrite the coordinate
as (x′, y) = (x − ult, y) and the time-derivative can be

rewritten as ∂
∂t = ∂x′

∂t
∂

∂x′ = −ul
∂

∂x′ = −ul
∂
∂T

∂T
∂x′ . By

using this derivative of T , the continuum equation of the
local volume V in x axis is given by

− ul
∂V

∂T

∂T

∂x′ +∇′ · (V (u+ ul)) = 0, (12)
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FIG. S3. Schematic illustration of thermal expansion of boundary wall and the compression of enclosed solution.

where ∇′ is ∂
∂x′ . Because the motion of a hot spot is

symmetric across x = 0, one can suppose that the change
of local volume in y axis does not depend on time and we
thus get V ∂v/∂y = 0 in order to satisfy the conservation
of mass. Accordingly,

− ul
∂V

∂T

∂T

∂x′ + V
∂u

∂x′ = 0. (13)

After the exchange of x variable from x′ (∵ ∂/∂x′ =
∂x/∂x′ · ∂/∂x = ∂/∂x), we obtain

∂u

∂x
= ul

∂(lnV )

∂T

∂T

∂x
. (14)

Next, to find the explicit form of thermal expansion
coefficient of γ for polymer solution, we consider thermal
expansion of the PDMS substrate, through the effect of
viscoelastic deformation. Suppose that the polymer solu-
tion is locally heated by focused infrared laser, the trans-
ferred heat from bulk solution induces thermal expansion
of soft deformable wall of PDMS. The length of thermal
expansion in z axis is assumed to

∆l = l0γ
w∆T, (15)

where l0 is the penetration depth of transferred heat
(Eq.(10)), and γw is thermal expansion coefficient of
PDMS defined as γw = (1/V w)(∂V w/∂T ). Because of
this thermal expansion, the change of volume in a PDMS
channel is ∆V w = 2S∆l = 2Sl0γ

w∆T with the area of
S (FIG.S3).
We describe the local volume of bulk fluid at rest as

V0 = Sd with the area of S and the thickness of d. This
bulk fluid is subject to the compression owing to the ex-
panded PDMS wall. Then volume pushed out by PDMS
expansion is assumed as ∆V = 2S∆l. The strain of ϵ is
defined as ϵ = −(V −V0)/V0 = −∆V/V0. This expression
leads γ = (1/V )(∂V/∂T ) = −(2l0/d)(1/ϵτ )(∂ϵτ/∂T ) ≡
−(2l0/d)γ

w

To describe the mechanics of local thermal expansion,
we employed Voigt model consisted of one spring and one
dash-pot. The dynamics of strain relaxation is given by

ηw
dϵτ
dt

+ Eϵτ = σ, (16)

ϵτ is strain, E is the elastic constant, ηw is the viscosity
of the dash-pot (PDMS substrate), σ the stress due to

thermal expansion. Because the mechanical stress arises
from thermal expansion in the exposure of ∆T , one can
yield σ = Eγw∆T with thermal expansion coefficient of
PDMS γw and Eq. (16) is rewritten as

dϵτ
dt

+
1

τ
ϵτ =

1

τ
γw∆T. (17)

τ = ηw/E is the characteristic times for viscoelastic re-
laxation. By solving this differential equation within the
frame of one cycle, t = [n/fl, (n+1)/fl] (n = 0, 1, 2, · · · ),
the ratio of volume change of solution under compression
by expanded walls is

∆V

V0
= −γ∆T (1− e

− 1
flτ ), (18)

where ∆V = V − V0 and γ = −(2l0/d)γ
w. The typical

penetration depth l0 of PDMS is 17 µm while the depth
of microchannel of d is 25 µm in this experiment. We
assume that the ratio 2l0/d is close to 1 (γ ≈ −γw).� �

D. Reduced viscosity in temperature and
solute gradients� �

In a solution of polymer such as polyethylene glycol
(PEG), the viscosity of solution η depends on both tem-
perature T and the concentration of PEG cp. According
to the previous studies, the empirical relation of the vis-
cosity is given by

η = C exp

[
B(cp)

T − Tc

]
, (19)

where C and Tc are the constants independent of ther-
modynamic variables T and cp but B(cp) is the func-
tion showing monotonic increase for cp. This empiri-
cal relation has been independently obtained from the
study using molecular dynamics simulation[2], such that
η = C ′ exp[E/(RT )] where C ′ is the constant while E is
the variable depending on cp. Given that the small de-
viations of temperature ∆T and polymer concentration
∆cp, the change of viscosity ∆η is described as

∆η =

(
∂η

∂T

)
cp
∆T +

(
∂η

∂cp

)
T

∆cp (20)

=

[
− B

(T − Tc)2
∆T +

1

T − Tc

dB

dcp
∆cp

]
η. (21)
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Then we need to consider how large 1/(T − Tc) changes
around at room temperature. The previous studies has
reported Tc ≈ 180 K, suggesting that 1/(T−Tc) assumed
to be constant at room temperature T=300K. We there-
fore replace the coefficients of ∆T and ∆cp as constants
β0 and β1 respectively. Eventually, the general form of
viscosity change yields

∆η

η
= β0∆T − β1∆cp. (22)

This expression indicates that one needs to consider
both temperature and the concentration of polymer in
order to capture the change of viscosity in a tempera-
ture gradient. To find the explicit form of concentration
gradient of polymer, the balance of density flux is consid-
ered. Local thermal gradient∇T induces the transport of
molecules, which named as thermophroesis or the Soret
effect. For typical polymer or colloidal particles whose
density is heavier than water, thermophoresis depletes
these solutes from hot region. The flux of solute due to
thermophoresis is described by Jp

Tp = −cpDp
T∇T . The

spatial distribution of solute concentration is determined
by the balance of solute fluxes between thermal diffusion
of Jp

Tp and normal diffusion Jp
diff = −Dp∇cp. The phe-

nomenological equation for the net flux Jp = Jp
diff +Jp

Tp
is

Jp = −Dp(∇cp + cpSp
T∇T ), (23)

where Dp is the diffusion coefficient, cp the local concen-
tration of the solute and Sp

T the Soret coefficient. One
can solve this equation in steady state (Jp = 0), the con-
centration of the solute yields

cp(r) = cp0 exp[−Sp
T∆T ] (24)

with the Soret coefficient of Sp
T = Dp

T /D
p and cp0 is the

solute concentration at infinity (FIG.S4). For small ∆T ,
we can assume ∆cp ≈ −cp0S

p
T∆T . By substituting this

form in Eq.(22), the change of viscosity reads

∆η

η
= (β0 + β1c

p
0S

p
T )∆T. (25)

� �
E. Thermal molecular focusing� �

Next, we show theoretical details for the derivation of Eq.
(6) in the main text by considering the transport equa-
tion of DNA molecules that are subject to thermophore-
sis, diffusiophoresis, and hydrodynamic focusing. The
equation of density flux of DNA reads

J = −D(∇c+ cST∇T ) + cuDp + cuhf (26)

where the diffusiophoretic velocity is uDp = (uDp, vDp)

and vDp = kBT
3η λ2cp(Sp

T − 1/T )∇yT with the thickness

of depletion layer λ[3][4], and the microflow of local hy-
drodynamic focusing uhf = (uhf , vhf ). Because vhf is

10 times smaller than uhf in our experiment, we assume
that vhf in the equation above is negligible. Hence, as
shown in Eq. (2) in the main text, light-driven hydrody-
namic focusing (LHF) of uhf = uhfex along the path of
laser scanning (x axis) is given by

uhf (x) = −ul sinh

[
2x

ulτ

]
(β0 + β1c

p
0S

p
T )(γ − Γτ )(∆T )2

(27)
where fl=ul/2L, defined as 1/fl=(∆tf + ∆tr)/2. The
β(γ − Γτ )(∆T )2 means the multiplicative interplay of
thermal viscosity and thermal viscoelastic compression
under γ > Γτ . Since the magnitude of vhf is 0.1µm/sec

while the typical length of normal diffusion is
√
D/fl ≈

1 µm. Thus the diffusion is relatively faster than the in-
duced flow, meaning that the steady state can be present.
By solving the equation in the steady state (J = 0), the
spatial distribution of DNA in x axis yields

c(x, y) = c0 exp

[
−ST∆T+V ′∆cp+

1

D

(∫ x

−∞
dx′uhf (x

′)

)]
,

(28)
where V ′ = 2πaλ2 with the radius of gyration of DNA of
a. We can renormalize the DNA concentration relative to
the accumulated amount in the absence of the microflow
as

c(x)

c0 exp[−ST∆T + V ′∆cp]
= exp

[
1

D

(∫ x

−∞
dx′uhf (x

′)

)]
.

(29)
We define this expression as A(x) in order to examine
the index of molecular focusing.

To analytically solve A(x), we need to derive the
explicit form of uhf (x). For a heat spot that moves
in the path −L ≤ x ≤ L at y = 0, the spatial
distribution of temperature increase, ∆T (x, y), follow

∆T (x, 0) exp
(
− y2

2w2

)
, with the width of temperature dis-

tribution w. We then consider the microflow on the path
of the moving heat spot (y = 0). On the one hand,
the temperature gradient that moves in forward direction
drives the microflow uf

ve at the position x (−L ≤ x ≤ L)
as

uf
ve(x) = −ul

2
(β0 + β1c

p
0S

p
T )γ(1− e

− L+x
flτL )(∆T (x, 0))2.

(30)
On the other hand, when the heat spot moves in opposite
direction (backward), the microflow ub

ve at the position
x reads

ub
ve(x) = +

ul

2
(β0 + β1c

p
0S

p
T )γ(1− e

− L−x
flτL )(∆T (x, 0))2.

(31)
By summing reciprocal microflows of Eqs. (30) and

(31), we obtain the expression of LHF as

uhf (x) = −ule
− 1

flτ sinh

[
2x

ulτ

]
(β0+β1c

p
0S

p
T )γ(∆T (x, 0))2.

(32)
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FIG. S4. Numerical simulation of the concentration of PEG, cp, under a moving temperature gradient. The color map of
depleted solute from hot region is shown in moving frame of heat wave at various propagation speeds. (a to e) cp(x) in the
moving frame. fl=(a) 0 Hz, (b) 1 Hz, (c) 10 Hz, (d) 100 Hz, (e) 1000 Hz. (f) the minimal concentration of solute versus
frequency fl is plotted.

Parameter Symbol Value

Half of the length of laser scanning line L 80µm
Relaxation time constant of PDMS τ 1.2 sec [5]
Heat capacity of water Cv 4.2×10−12 J/(µm3·K)[6]
Heat conductivity of water λh 6.1×10−7 W/(µm·K)[6]
Heat conductivity of PDMS λw

h 1.5×10−7 W/(µm·K)[6][11]
Heat transfer coefficient h 5.0×10−10 W/(µm3·K) [7]
Thermo-viscous coefficient of water β0 - 2.2×10−2 1/K [9]
The rate of viscosity change by PEG conc. β1 - 27.7 ml/g [2]
Thermo-expansion coefficient of PDMS γ - 3.1×10−4 1/K [10]
The size of a moving heat spot b 7.5µm
Soret coefficient of PEG20000 Sp

T 8.89×10−2 1/K [8]
Soret coefficient of DNA ST 3.80×10−1 1/K [4]
The depth of depletion layer λ 2.5 nm
The gyration radius of DNA a 0.1µm
Diffusion coefficient of PEG20000 Dp 58µm2/s
Diffusion coefficient of DNA under the heat spot D 2.89µm2/s

TABLE S1. The list of parameters used in this study for numerical simulation
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