Electronic Supplementary Information for

Single Lithium-Ion Polymer Electrolytes Based on Poly (ionic

liquid)s for Lithium-Ion Batteries

Yang Yu,^a Fei Lu,^{*,a} Na Sun,^a Aoli Wu,^a Wei Pan^b and Liqiang Zheng^{*,a}

^a Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry

of Education, Jinan, 250100, People's Republic of China

^bCollege of Chemistry, Chemical Engineering and Materials Science, Shandong

Normal University, Jinan, 250014, P. R. China

*Corresponding author: Liqiang Zheng E-mail address: lqzheng@sdu.edu.cn

Fei Lu E-mail address: lufei@mail.sdu.edu.cn

Figure S1. The photograph of the obtained PIL [LiSTFSI][VIPS].

Figure S2. TGA traces measured under N_2 for [LiSTFSI][VIPS].

Sample	LiSTFSI- VIPS(wt)	PEGM (wt)	PEGDM (wt)	PC (wt)	
SIPE1	5	60	5	30	
SIPE2	10	55	5	30	
SIPE3	20	45	5	30	
SIPE4	5	50	5	40	
SIPE5	10	45	5	40	
SIPE6	15	40	5	40	
SIPE7	5	40	5	50	
SIPE8	10	35	5	50	
SIPE9	15	30	5	50	

 Table S1. Sample Composition in weight for SIPEs^a

1173 0.5% w/w of the monomers

a

Figure S3. TGA traces measured under N_2 for SIPE (2, 5, 8).

Figure S4. Ionic conductivities as a function of temperature indicating the effects of the contents of (a) PC(SIPE2,5,8) and (b) IL(SIPE4,5,6).

Figure S5. Impedance spectra before and after chronoamperometry for a Li symmetric cell with SIPE2 polymer electrolyte film; the inset is the time-dependence response of DC polarization.

Figure S6. Impedance spectra before and after chronoamperometry for a Li symmetric cell with SIPE5 polymer electrolyte film; the inset is the time-dependence response of DC polarization.

Table S2. Values of the parameters in Equation S1 and the corresponding calculated values of lithium-ion transference number (t_{Li}^+)

Samples	I_{θ}	I_S	R_{θ}	R_S	ΔV	t_{Li}^+
	(µA)	(µA)	(KΩ)	(KΩ)	(mV)	
SIPE2	0.65	0.49	82.846	92.890	10	0.90
SIPE5	1.31	1.26	44.358	48.204	10	0.91
SIPE8	1.40	1.38	25.172	26.417	10	0.94

$$t_{Li^{+}} = \frac{I_{s}[\Delta V - I_{0}R_{0}]}{I_{0}[\Delta V - I_{s}R_{s}]}$$
(S1)

where I_0 and Is are the initial and steady-state current determined by the DC

polarization, respectively; R_0 and Rs are the interface resistance measured by AC impedance before and after polarization; ΔV is the DV potential applied on the cell.

Figure S8. ¹H NMR spectra of VIPS

Figure S9. ¹H NMR spectra of LiSTFSI, VIPS, LiSTFSI-VIPS (n/n=1/1)