Supporting Information

Hydrophobic domains of amphiphilic polymeric nanoparticles: Probing self-assembly dynamics and interior structure by fluorescence spectroscopy and molecular dynamics simulations

Denis Svechkarev,¹ Alexander Kyrychenko,² William M. Payne,¹ Aaron M. Mohs^{1,3,4*}

¹ Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha, NE 68198-6805, United States

² Institute for Chemistry, V. N. Karazin Kharkiv National University 4 Svobody Square, 61022 Kharkiv, Ukraine

³ Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, United States

⁴ Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6805, United States

1. ¹H NMR spectra of HA amphiphiles

Figure S1. ¹H NMR spectrum of ocdHA.

Figure S2. ¹H NMR spectrum of pyHA.

2. Simulations of ocdHA and pyHA self-assembly

Figure S3. Structure of 10 kDa pyHA. The pyrenyl-butanamide fragments located at the randomly selected positions are shown in *green*.

Figure S4. Dynamics of radius of gyration **(A)** and polymer-polymer contacts **(B)** during 100 ns of MD simulations of the system consisting of 22 molecules of modified 10 kDa HA.

Figure S5. Dynamics of polymer-polymer **(A)** and polymer-water **(B)** hydrogen bonds during 100 ns of MD simulations of the system consisting of 22 molecules of modified 10 kDa HA.

Figure S6. Dynamics of hydrophilic **(A)**, hydrophobic **(B)** and total **(C)** solvent-accessible surface during 100 ns of MD simulations of the system consisting of 22 molecules of modified 10 kDa HA.

3. Spectral properties of the dyes

Figure S7. Structures of the dyes used for probing the interior of modified HA nanoparticles (top) and their fluorescence spectra in DMSO-water binary systems (bottom, water content is shown in the legends).

Figure S8. Spectral deconvolution of the emission spectra represented in the Figure 6. Calculated emissions for individual spectral components are colored in blue (normal form, N*), green (anionic form, A*), and orange (phototautomeric form, T*).

4. Simulations of dye-polymer systems

Figure S9. Dynamics of hydrophilic **(A)**, hydrophobic **(B)**, and total **(C)** dye-polymer contacts, hydroxyl-water **(D)**, carbonyl-water **(E)**, and total **(F)** dye-water hydrogen bonds during 100 ns of MD simulations of the system consisting of 2 molecules of DOAF and 4 molecules of ocdHA.

Figure S10. Dynamics of hydrophilic **(A)**, hydrophobic **(B)**, and total **(C)** dye-polymer contacts, hydroxyl-water **(D)**, carbonyl-water **(E)**, and total **(F)** dye-water hydrogen bonds during 100 ns of MD simulations of the system consisting of 2 molecules of DPAF and 4 molecules of ocdHA.

Figure S11. Dynamics of hydrophilic **(A)**, hydrophobic **(B)**, and total **(C)** dye-polymer contacts, hydroxyl-water **(D)**, carbonyl-water **(E)**, and total **(F)** dye-water hydrogen bonds during 100 ns of MD simulations of the system consisting of 2 molecules of DOAF and 4 molecules of pyHA.

Figure S12. Dynamics of hydrophilic **(A)**, hydrophobic **(B)**, and total **(C)** dye-polymer contacts, hydroxyl-water **(D)**, carbonyl-water **(E)**, and total **(F)** dye-water hydrogen bonds during 100 ns of MD simulations of the system consisting of 2 molecules of DPAF and 4 molecules of pyHA.