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Abstract

This Supplementary Information provides three calculations (section I-III) that we have used in

the main text, as well as a calculation (section IV) that demonstrates the wider applicability of our

approach. In section I, we show how the partition function of a chain of length N can be expressed

as a function of the determinant of the Hessian matrix (of size N x N) of the Hamiltonian. In

section II, we provide an analytical expression for this determinant for arbitrary chain length N

and an arbitrary number of ligand N bound to the chain, for any distribution of these ligands

on the chain. In section III we calculate the configuration average of the determinant. Finally, in

section IV we add additional degrees of freedom to the chain (representing shape fluctuation of

the monomers and bond-length fluctuations between the monomers), and show that the resulting

entropic penalty is additive to the penalty we already had in sections I-III.
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I. RELATION BETWEEN PARTITION FUNCTION AND DETERMINANT

The partition function in the main text, given by

Zn(Ne) = Z . Z Z %) (Z n; — Ne> /dxexp(—ﬁ?—[(x;ﬁ,a,Kd,e,ee,x)), (S.1)

can be integrated, i.e., [ dxexp (—fH) = e ANl -feNe \/WN/ﬂNHN det lf[N(ﬁ, a, Kq). We

cast it in the usual form [I], 2]
Zn(N.) = ZN(0)Wy (N, )e PN =Ly Neg=feeNe (S.2)

with Z,(0) = /7/Bk the partition function of an inactive monomer. Further W, = a~1/2

measures the entropic penalty of monomer activation and

Wy (M) = a2 ( ﬁ ) <<det (i o Kd)>_1/ 2> | (8.3)

measures the entropic penalty of polymerisation. In this expression, ( ]]\Z ) = N!/(N—N,)!N,!
is the number of chain configurations and (.) is the average over all chain configurations.

Below we show that this expression may be approximated by
1

Ne/2 N

where (dY (N,, a)) are configuration-averaged polynomial coefficients that can be calculated

analytically.

II. EXACT CALCULATION OF DETERMINANT

In this section, we calculate the determinant of the Hessian matrix in the theory section
of the main text. This is a symmetric N x N tridiagonal matrix with arbitrary real (positive)
values at the diagonal. The values at the diagonal are given by «; + Kq for i = 1, N and
by a; + 2K4q for 1 < i < N. At the first upper and lower diagonals the matrix elements
are given by —K4. For general N the determinant may be calculated analytically using
the method reported in Refs. [3, [4], where the solution is given in terms of products of the
matrix elements. We are however primarily interested in the expansion of this determinant

in the form of a polynomial of a and Kd, i.e., we seek the form

N
det Hy (7, o, Kq) = ZdN Q) K5, with dy =) b (S.5)
=0
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Our task is hence to calculate the coefficients dfy. While we previously reported the solution
for « = 1 in Ref. [2], we now present the general case where a can take any real non-zero
value.

The determinant of the N x N symmetric tridiagonal matrix, det H ~, can be calculated

using a set of recurrence relations given by

p1 = a1 + Kaq, (S.6)
P2 = (a1a0) + (204 + ) Kg + K3, (S.7)
Pn = (n +2Kq)pp_1 — Kipn_s, for 2<mn < N, (S.8)
det Hy = (an + Kq)py-1 — Kipn_a. (S.9)

For a monomer (N = 1) and a dimer (N = 2) the determinant is det H; = a; and det Hy =
aras + (o + az) K3, respectively.
For oligomers (N > 2), the polynomial form in Eq. (S.5) can be obtained by writing

1 — . . . . .
Pn = Z?:l C?Ké 1 and inserting that into the recurrence relations above, to give

Pn = ot + (e 20 ) Ka+ ) (oG 42 — UK + (207 — K,

- (S.10)

for 2 < n < N. In general, ¢} is a linear combination of all permutations of the product

[aj, @), ... v, ]. This product consists of k = n + 2 — i different monomers selected from the
chain of length N.

Finally, from the recurrence relations it now follows that the determinant of the Hessian

matrix is given by
N
det Hy = aycl ™ + (ane) ™+ eV Ky + Z(aNclel + = OHKE (S)
1=3

Note that ¢, ; =1 for all n and hence that the term of order K7’ equals zero. Comparison
of Eq. (S.11)) to Eq. (S.5)) yields the polynomial coefficients di we were after.

For long-chain polymers we approximate this determinant by

det Hy = w2V V(K )a®Mw* V(K /a), (S.12)
where ¢ = N,/N is the fraction of activated monomers in the chain and w(z) = § +

T + %\/1 + 4x describes the reduction of internal degrees of freedom of a homopolymer
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upon monomer addition in the long-chain limit [2]. In this case, Eq. (S.4]) reduces to the

approximation
AS/kg(N —1) = —¢lngp — (1 —¢)In(1 — ¢) + %(1 — ¢)Inw(Ky) + %qblnw(Kd/oz) (S.13)

given in the theory section in the main text.

ITII. APPROXIMATION: CONFIGURATION AVERAGE OF DETERMINANT

As shown above, the coefficient d¥ (77, @) is a weighted sum of all possible permutations of
a product of n = N + 1 — k different o;s from the diagonal of the Hessian matrix H. In this
section, we will approximate this coefficient by the average d¥ (17) ~ (d¥ (7)) = d& (N,) that
can be obtained from the analytical solution for N, = 0, provided in Ref. [2] and implicitly

summarised in this Supplementary Information. In general, these coefficients can be written

as
k+1 N
Z @j Z Qjy * "+ Z ajkgjle---jn (ﬁ) (8'14)
Jji=1 Jj2=ji1+1 Jn=Jjn—1+1

The weight, &;,j,..;,., of each permutation is independent of the values of any «;, but in
principle depends on the configuration, 77, of the full polymer chain.

In the following, we neglect these configuration-dependent variations and assume
Eivjoin = (Ei1ja.jn), Where (.) is the average over all chain configurations. We discuss
the validity and implications of this approximation at the end of this section. The analyti-
cal solution for the configuration average can be calculated by considering a homopolymer,
i.e., for N, =0,

k k+1

dN O a) Z Z ' Z Ejrjoein = '(NLiW<£71j2mjn>' (S.15)

n=ljp=p+l  jn=jn-1+1
Hence, the result (£j,;,. ;) is given in terms of the known homopolymer coefficients dﬁo =
dy (0).
Using this result for the homopolymer we generate the polynomial coefficients for copoly-

mer of active and inactive monomers,

@)~ TS S oy e =il el (536)



The average ([aj, ... ; ,]) is a polynomial in a of order min{n, N,}. Its polynomial coeffi-
cient for a term of order n, = 0, 1,..., n represents the probability, P(n, n.; N, N,), that a
product [ay, ...a;,] is of order a”. Hence, it follows that Eq. (S.16) can be rephrased as

nA,max(k)
(@Y (N)) =dyy > P(N+1—kmnegN, Noa™, (S.17)

ne:nA,min(k)
with 1A min(k) = max{l, N, + 1 — k} and with na max(k) = min{N + 1 — k, N.}. The
probability is given by the probability that if n» monomers are randomly, but uniquely,

selected from N — N, inactive and N, active monomers. Hence, the probability is given by

T 1) [ R

Note that this probability is proportional to the number of permutations of the n, active
monomers in a sequence of n monomers, and to the number of permutations of the remaining
N, — ne in a sequence of N — n monomers. The total number of permutations (]]\\7;) of the
N, monomers in a sequence of length N normalises the probability distribution.

We have verified the validity of the approximate configuration average by comparing it to
the numerical configuration average. The latter we have obtained by averaging over various
randomly generated permutations of copolymers. In Figure 2 of the main text, we have
presented the exact solutions for the individual chains (black lines) and the approximate
ensemble average (red lines) for chains of N = 10 monomers with all possible numbers
of ligands bound to them (N, = 0, ..., 10). For weak (K4 < 1) and strong (K4 >
VN ) allosteric coupling the approximation is exact, implying that, in absence of energetic
preferences, the ligands are randomly distributed for length scales smaller than the allosteric
interaction range v/N. This implies that our approximation is accurate for chains with
ligand-distributions that are uniform at length scales of > v/N monomers, but is inaccurate
for ‘block copolymers’ with significant deviations in ligand distribution at those length scales.
The latter type of chains is, due to the absence of enthalpic allostery, rare in the present

work, and do therefore not affect the results presented in the main text.

IV. EFFECT OF (ANISOTROPIC) SHAPE FLUCTUATIONS

In this work we have used the allosteron model to describe the direct coupling of the

internal modes of monomers, giving rise to an entropic penalty. What has been excluded in



this model, is the indirect coupling of the internal modes because of shape fluctuations. In
Figure[S.T|we show that anisotropic shape fluctuations are in principle coupled to the internal
modes of the monomers. The entropies of direct and indirect coupling of the internal modes
turn out to be additive, which implies that indirect couplings do not alter our conclusions

in the main text.
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FIG. S.1:  Schematic examples of the coupling between coarse-grained bending modes in the

allosteron model for proteins.

In order to show this, we describe shape changes by extending the Hamiltonian in the main
text with additional degrees of freedom x,, 41 that represent the indirect shape coupling
between monomers n and n + 1. In general, the monomers are anisotropic and the two
different monomer-monomer binding sites may be characterised with two different form
factors 1 and 5. Depending on v, and 75, which may be either be positive or negative, the
internal modes of the monomers may be correlated or anti correlated. The contribution by
indirect coupling to the Hamiltonian is given by

N-1

Hi = ki Z(xn,n+1 — MTp — ’721’n+1)2- (8-19)

n=1

Hence, the entropic part of the Hamiltonian becomes x'TrkH VX', with X' =
[{['1, T2y «vvy TNy X125 - - I(Nfl)N]T and
. Hy+ A|B
Hy = (S.20)
BT |D
a block matrix within which H ~ is the original N x N square matrix in the main text, and
A represents the indirect coupling between the internal degrees of freedom of the monomers.

This is again a tridiagonal matrix, with at the main diagonal A;; = v}Kj;, Ay y = 72K; and
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Ann = +73)K; for 1 < n < N. Here, K; = k;/r is the dimensionless indirect-coupling
constant. At the first upper and lower diagonals, A,,,, = 7172K;. The matrix D provides
the contribution by the ,, ,,+17n 41 terms. Since only square terms are present, D is a
(N —1) x (N — 1) diagonal matrix with K; as diagonal elements. Finally, B generates the
Ty Tpmt1 cross terms. Here, By, ,,, = —71 K and By, = — 7K.

The determinant of the dimensionless Hessian matrix is therefore det(f] N) =
det(D)det(Hy + A — BD'BT), which we find equals det(Hy) = det(D)det(Hy) =
KNt det(I:I ~). Hence, the (anisotropic) shape fluctuations provide an entropic penalty
AS = (1/2)kgIn(Bk;/m) that is independent of both the chain length and the binding of
ligands.
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