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Abstract

This Supplementary Information provides three calculations (section I-III) that we have used in

the main text, as well as a calculation (section IV) that demonstrates the wider applicability of our

approach. In section I, we show how the partition function of a chain of length N can be expressed

as a function of the determinant of the Hessian matrix (of size N × N) of the Hamiltonian. In

section II, we provide an analytical expression for this determinant for arbitrary chain length N

and an arbitrary number of ligand NA bound to the chain, for any distribution of these ligands

on the chain. In section III we calculate the configuration average of the determinant. Finally, in

section IV we add additional degrees of freedom to the chain (representing shape fluctuation of

the monomers and bond-length fluctuations between the monomers), and show that the resulting

entropic penalty is additive to the penalty we already had in sections I-III.
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I. RELATION BETWEEN PARTITION FUNCTION AND DETERMINANT

The partition function in the main text, given by

ZN(Ne) =
1∑

η1=0

· · ·
1∑

ηi=0

· · ·
1∑

ηN=0

δ

(
N∑
ηi=1

ηi −Ne

)∫
dx exp (−βH(x; ~η, α,Kd, ε, εe,x)) , (S.1)

can be integrated, i.e.,
∫

dx exp (−βH) = e−βε(N−1)e−βεeNe

√
πN/βNκN det ĤN(~η, α,Kd). We

cast it in the usual form [1, 2]

ZN(Ne) = ZN
1 (0)WN(Ne)e

−βε(N−1)WNe
e e−βεeNe (S.2)

with Z1(0) =
√
π/βκ the partition function of an inactive monomer. Further We ≡ α−1/2

measures the entropic penalty of monomer activation and

WN(Ne) ≡ αNA/2

(
N

Ne

)〈(
det ĤN(~η, α,Kd)

)−1/2〉
, (S.3)

measures the entropic penalty of polymerisation. In this expression,
(
N
Ne

)
= N !/(N−Ne)!Ne!

is the number of chain configurations and 〈 . 〉 is the average over all chain configurations.

Below we show that this expression may be approximated by

WN(Ne) ≈ αNe/2

(
N

Ne

)
1√∑N

k=1〈dNk (Ne, α)〉Kk−1
d

, (S.4)

where 〈dNk (Ne, α)〉 are configuration-averaged polynomial coefficients that can be calculated

analytically.

II. EXACT CALCULATION OF DETERMINANT

In this section, we calculate the determinant of the Hessian matrix in the theory section

of the main text. This is a symmetric N×N tridiagonal matrix with arbitrary real (positive)

values at the diagonal. The values at the diagonal are given by αi + Kd for i = 1, N and

by αi + 2Kd for 1 < i < N . At the first upper and lower diagonals the matrix elements

are given by −Kd. For general N the determinant may be calculated analytically using

the method reported in Refs. [3, 4], where the solution is given in terms of products of the

matrix elements. We are however primarily interested in the expansion of this determinant

in the form of a polynomial of α and Kd, i.e., we seek the form

det ĤN(~η, α,Kd) ≡
N∑
k=1

dNk (~η, α)Kk−1
d , with dNk ≡

N∑
l=0

blα
l (S.5)
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Our task is hence to calculate the coefficients dNk . While we previously reported the solution

for α = 1 in Ref. [2], we now present the general case where α can take any real non-zero

value.

The determinant of the N ×N symmetric tridiagonal matrix, det ĤN , can be calculated

using a set of recurrence relations given by

p1 = α1 +Kd, (S.6)

p2 = (α1α2) + (2α1 + α2)Kd +K2
d, (S.7)

pn = (αn + 2Kd)pn−1 −K2
dpn−2, for 2 < n < N, (S.8)

det ĤN = (αN +Kd)pN−1 −K2
dpN−2. (S.9)

For a monomer (N = 1) and a dimer (N = 2) the determinant is det Ĥ1 = α1 and det Ĥ2 =

α1α2 + (α1 + α2)K
2
d, respectively.

For oligomers (N > 2), the polynomial form in Eq. (S.5) can be obtained by writing

pn =
∑n+1

l=1 c
n
l K

l−1
d and inserting that into the recurrence relations above, to give

pn = αnc
n−1
1 + (αnc

n−1
2 + 2cn−11 )Kd +

n∑
l=3

(αnc
n−1
l + 2cn−1l−1 − c

n−2
l−2 )K l−1

d + (2cn−1n − cn−2n−1)K
n
d ,

(S.10)

for 2 < n < N . In general, cnl is a linear combination of all permutations of the product

[αj1αj2 . . . αjk ]. This product consists of k = n+ 2− i different monomers selected from the

chain of length N .

Finally, from the recurrence relations it now follows that the determinant of the Hessian

matrix is given by

det ĤN = αNc
N−1
1 + (αNc

N−1
2 + cN−11 )Kd +

N∑
l=3

(αNc
N−1
l + cN−1l−1 − c

N−2
l−2 )K l−1

d . (S.11)

Note that cnn+1 = 1 for all n and hence that the term of order KN
d equals zero. Comparison

of Eq. (S.11) to Eq. (S.5) yields the polynomial coefficients dNk we were after.

For long-chain polymers we approximate this determinant by

det ĤN = w(1−φ)(N−1)(Kd)αφNwφ(N−1)(Kd/α), (S.12)

where φ ≡ Ne/N is the fraction of activated monomers in the chain and w(x) ≡ 1
2

+

x + 1
2

√
1 + 4x describes the reduction of internal degrees of freedom of a homopolymer
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upon monomer addition in the long-chain limit [2]. In this case, Eq. (S.4) reduces to the

approximation

∆S/kB(N − 1) = −φ lnφ− (1− φ) ln(1− φ) +
1

2
(1− φ) lnw(Kd) +

1

2
φ lnw(Kd/α) (S.13)

given in the theory section in the main text.

III. APPROXIMATION: CONFIGURATION AVERAGE OF DETERMINANT

As shown above, the coefficient dNk (~η, α) is a weighted sum of all possible permutations of

a product of n = N + 1− k different αjs from the diagonal of the Hessian matrix Ĥ. In this

section, we will approximate this coefficient by the average dNk (~η) ≈ 〈dNk (~η)〉 ≡ dNk (Ne) that

can be obtained from the analytical solution for Ne = 0, provided in Ref. [2] and implicitly

summarised in this Supplementary Information. In general, these coefficients can be written

as

dNk (~η, α) =
k∑

j1=1

αj1

k+1∑
j2=j1+1

αj2 · · ·
N∑

jn=jn−1+1

αjkξj1j2...jn(~η). (S.14)

The weight, ξj1j2...jn , of each permutation is independent of the values of any αj, but in

principle depends on the configuration, ~η, of the full polymer chain.

In the following, we neglect these configuration-dependent variations and assume

ξj1j2...jn ≈ 〈ξj1j2...jn〉, where 〈 . 〉 is the average over all chain configurations. We discuss

the validity and implications of this approximation at the end of this section. The analyti-

cal solution for the configuration average can be calculated by considering a homopolymer,

i.e., for Ne = 0,

dNk (~0, α) =
k∑

j1=1

k+1∑
j2=j1+1

· · ·
N∑

jn=jn−1+1

ξj1j2...jn =
N !

n!(N − n)!
〈ξj1j2...jn〉. (S.15)

Hence, the result 〈ξj1j2...jn〉 is given in terms of the known homopolymer coefficients dNk,0 ≡

dNk (~0).

Using this result for the homopolymer we generate the polynomial coefficients for copoly-

mer of active and inactive monomers,

〈dNk (Ne)〉 ≈ dNk,0
n!(N − n)!

N !

k∑
j1=1

· · ·
N∑

jn=jn−1+1

[αj1 . . . αjn ] = dNk,0〈[αj1 . . . αjn ]〉. (S.16)
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The average 〈[αj1 . . . αjn ]〉 is a polynomial in α of order min{n, Ne}. Its polynomial coeffi-

cient for a term of order ne = 0, 1, . . . , n represents the probability, P (n, ne;N,Ne), that a

product [αj1 . . . αjn ] is of order αne . Hence, it follows that Eq. (S.16) can be rephrased as

〈dNk (Ne)〉 = dNk,0

nA,max(k)∑
ne=nA,min(k)

P (N + 1− k, ne;N,Ne)α
ne , (S.17)

with nA,min(k) = max{1, Ne + 1 − k} and with nA,max(k) = min{N + 1 − k,Ne}. The

probability is given by the probability that if n monomers are randomly, but uniquely,

selected from N −Ne inactive and Ne active monomers. Hence, the probability is given by

P (n, ne;N,Ne) =

(
n

ne

)(
N − n
Ne − ne

)[(
N

Ne

)]−1
. (S.18)

Note that this probability is proportional to the number of permutations of the ne active

monomers in a sequence of n monomers, and to the number of permutations of the remaining

Ne − ne in a sequence of N − n monomers. The total number of permutations
(
Ne

N

)
of the

Ne monomers in a sequence of length N normalises the probability distribution.

We have verified the validity of the approximate configuration average by comparing it to

the numerical configuration average. The latter we have obtained by averaging over various

randomly generated permutations of copolymers. In Figure 2 of the main text, we have

presented the exact solutions for the individual chains (black lines) and the approximate

ensemble average (red lines) for chains of N = 10 monomers with all possible numbers

of ligands bound to them (Ne = 0, . . . , 10). For weak (Kd � 1) and strong (Kd �
√
N) allosteric coupling the approximation is exact, implying that, in absence of energetic

preferences, the ligands are randomly distributed for length scales smaller than the allosteric

interaction range
√
N . This implies that our approximation is accurate for chains with

ligand-distributions that are uniform at length scales of >
√
N monomers, but is inaccurate

for ‘block copolymers’ with significant deviations in ligand distribution at those length scales.

The latter type of chains is, due to the absence of enthalpic allostery, rare in the present

work, and do therefore not affect the results presented in the main text.

IV. EFFECT OF (ANISOTROPIC) SHAPE FLUCTUATIONS

In this work we have used the allosteron model to describe the direct coupling of the

internal modes of monomers, giving rise to an entropic penalty. What has been excluded in
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this model, is the indirect coupling of the internal modes because of shape fluctuations. In

Figure S.1 we show that anisotropic shape fluctuations are in principle coupled to the internal

modes of the monomers. The entropies of direct and indirect coupling of the internal modes

turn out to be additive, which implies that indirect couplings do not alter our conclusions

in the main text.

FIG. S.1: Schematic examples of the coupling between coarse-grained bending modes in the

allosteron model for proteins.

In order to show this, we describe shape changes by extending the Hamiltonian in the main

text with additional degrees of freedom xn,n+1 that represent the indirect shape coupling

between monomers n and n + 1. In general, the monomers are anisotropic and the two

different monomer-monomer binding sites may be characterised with two different form

factors γ1 and γ2. Depending on γ1 and γ2, which may be either be positive or negative, the

internal modes of the monomers may be correlated or anti correlated. The contribution by

indirect coupling to the Hamiltonian is given by

Hi = κi

N−1∑
n=1

(xn,n+1 − γ1xn − γ2xn+1)
2. (S.19)

Hence, the entropic part of the Hamiltonian becomes x′TκĤ ′Nx
′, with x′ =

[x1, x2, . . . , xN , x1,2, . . . x(N−1)N ]T and

Ĥ ′N =

 ĤN + A B

BT D

 (S.20)

a block matrix within which ĤN is the original N ×N square matrix in the main text, and

A represents the indirect coupling between the internal degrees of freedom of the monomers.

This is again a tridiagonal matrix, with at the main diagonal A1,1 = γ21Ki, AN,N = γ22Ki and
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An,n = (γ21 + γ22)Ki for 1 < n < N . Here, Ki ≡ κi/κ is the dimensionless indirect-coupling

constant. At the first upper and lower diagonals, Am,n = γ1γ2Ki. The matrix D provides

the contribution by the xm,m+1xn,n+1 terms. Since only square terms are present, D is a

(N − 1)× (N − 1) diagonal matrix with Ki as diagonal elements. Finally, B generates the

xmxn,n+1 cross terms. Here, Bm,m = −γ1Ki and Bm−1,m = −γ2Ki.

The determinant of the dimensionless Hessian matrix is therefore det(Ĥ ′N) =

det(D) det(ĤN + A − BD−1BT), which we find equals det(Ĥ ′N) = det(D) det(ĤN) =

KN−1
i det(ĤN). Hence, the (anisotropic) shape fluctuations provide an entropic penalty

∆S = (1/2)kB ln(βκi/π) that is independent of both the chain length and the binding of

ligands.
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