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S1 Validation
Here we show a validation involving the growth of a monolayer annulus into a hemisphere, which
has been considered semi-analytically in [1]. In particular, the metric of a spherical shell is
prescribed onto a planar annulus plate. As a consequence, the plate will adopt a buckled state
that balances stretching and bending energy: zero stretching energy is obtained when the mid-
surface fully adopts the spherical geometry, whereas zero bending energy is achieved when the
plate remains flat. Consequently, the minimum-energy embedding will strongly depend on the
thickness of the plate.

We solve the minimum-energy embedding for a range of thicknesses, and compute the stretch-
ing and bending energy for each thickness. As in [1], we set the inner and outer radius of the
annulus to, respectively, Ri = 0.1 and Ro = 1.1. Our geometry is discretised using 33 796 tri-
angles. We compute the energy equilibrium with Y = 1 × 106 and ν = 0.5, and report the
normalised energy Ẽ/h = 4E(1 − ν2)/(Y πh) as in [1]. The results are presented in figure S1,
and show excellent agreement with the reference results.
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Figure S1: Stretching (blue) and bending (red) energies for the minimal-energy states of planar
annuli with prescribed metrics corresponding to a sphere, as a function of the plate thickness.
Reference results from [1] are shown in black (dashed).
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S2 Print paths and initial conditions
On the following pages, we show large images of the input print path from [2], and the density
field and filament-tangent field computing using our model, for each of the five shapes discussed
in the main text.
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Figure S2: Details of the helicoid. For each of the bottom/top layer, we show the experimental
print path (top), the numerical density field (middle) and the numerical filament-tangential
growth direction (bottom).
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Figure S3: Details of the catenoid. For each of the bottom/top layer, we show the experimental
print path (top), the numerical density field (middle) and the numerical filament-tangential
growth direction (bottom).
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Figure S4: Details of the logarithmic spiral. For each of the bottom/top layer, we show the
experimental print path (top), the numerical density field (middle) and the numerical filament-
tangential growth direction (bottom).
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Figure S5: Details of the sombrero. For each of the bottom/top layer, we show the experimental
print path (top), the numerical density field (middle) and the numerical filament-tangential
growth direction (bottom).
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Figure S6: Details of the folding flower. For each of the bottom/top layer, we show the experimen-
tal print path (top), the numerical density field (middle) and the numerical filament-tangential
growth direction (bottom).
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Figure S7: Details of the orchid. For each of the bottom/top layer, we show the experimental
print path (top), the numerical density field (middle) and the numerical filament-tangential
growth direction (bottom).
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S3 Computational details
In table S1 we report the number of triangles (NT ) and average number of evaluations for each
quasi-static minimization step (Nm) for all the test cases reported in this work.

All simulations were run on a Linux workstation with an Intel Xeon Gold 6130 CPU with
64 GB internal memory, and took between several minutes for the sombrero to about a day for
the catenoid, while sharing the computational resources of the workstation between two to three
simulations.

Table S1: Computational settings for the different test cases simulated here. The columns
represent number of triangles (NT ) and the average number of function evaluations for each
quasi-static minimization step (Nm).
case NT Nm

helicoid 12 430 22 355
catenoid 12 430 655 903
logarithmic spiral 12 415 327 407
sombrero 18 776 10 243
folding flower 15 185 55 895
orchid 28 870 118 849
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S4 Orchid mid-surface strains
We represent the mid-surface stretching strains on each triangle T using a scalar quantity
εT =

√∥∥(ar)−1
T (ac)T − I

∥∥2
e,T

/YT . Plotting this quantity over the mid-surface of the final orchid
geometry in figure S8. This distribution shows the large strains at the lower locations where
the large petals connect to the center disk. A careful inspection of the experimental sample (see
main text) shows that this is exactly the location where structure failure occurs.

Figure S8: Distribution of mid-surface stretching strains ε plotted in the grown state.
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