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I. Modified Reversible Gelation model for non-entangled semidilute solution: The 
complex modulus of this model is expressed as a sum of stress relaxation originating 
from the Rouse relaxation of the precursor chain GX

*, the relaxation of the sol 
chains/gel strands formed in the mean-field and critical percolation regions, GMF

* and 
GCP

*, respectively, and the dissociation-activated relaxation of the gel network, GN
*, 

as classified below for several ranges of the extent of gelation . 1, 2
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where X = N
2 is the Rouse time of precursor chain, with  being the relaxation 

time of the correlation blob of size , and N is the number of blobs per chain. char in 
eq 1 is the relaxation time of the characteristic sol chain, which scales with  as char = 
X||-3.
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        for G ≤  < c: 
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G = XN is a characteristic time where a transition from the mean-field type to a 
critical percolation type occurs.  char denotes the relaxation time for the characteristic 
sol chains, which scales with  as char = G|/G|-4, with G =XN

-1 being the 
characteristic time of the sol chains at  = G. 

for c ≤  <c
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In this range of , the system includes very large critical sol chains/gel strands of the 
relaxation time c = X

0.25s
0.75. c  is the Rouse time of a critical sol chain that exhibits 

the Rouse time identical to the effective breakup time.  is a fitting parameter to the 
order of 1. Rubinstein and Semenove argued3 that the sol chains/network strands 
larger than this critical chain (at c ≤  <c) would exhibit effective breakups 
continuously before the resulting pieces have the critical size, where the pieces further 
relax through the Rouse-type relaxation to exhibit relaxation time ~ c. 

for c ≤  <G
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strand = G|/G|-4 is an average Rouse time of a network strand, and life = sN
-

1/3(/G)1.33 is the lifetime of the strand controlled by ionic dissociation time s. 

for G ≤  < 1 
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where strand = X -3 and life = s.

   Equations S1-S5 give the modulus for the ionomers at 1 ≤  ≤ 1, i.e., those still 
containing sol chains.   At  > 1, all the precursor chains in the system are 
incorporated in the gel, and the modulus becomes sticky Rouse type: 1, 2, 4 

for  ≤ 
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Here, GRouse
* and GSR

* are the intrinsic Rouse and sticky Rouse parts of the moduli, 
respectively. When the sticky Rouse relaxation manifests (at  ≥ 1), the intrinsic 
Rouse relaxation of the chain is limited for a portion of chain between stickers and 
thus to the mode indices q > . The terminal relaxation of the chain becomes sticky-
Rouse type at larger length scales, as represented by the second summation for q ≤ 1, 

2, 4 

II. Shear rate dependences of viscosity: As an example, Figure 1 plots the viscosity  𝜂

against shear rate  for the PVA135 and PVA92 aqueous solutions of different weight �̇�

fraction w as indicated. At low concentration (w ≤ 6wt% for PVA135 and w ≤ 10wt% 
for PVA92), the solutions behave as Newtonian fluid for shear rate  < 103s-1, for �̇�

which the zero-shear viscosity 0 can be determined as an average value of all data 𝜂

points (lines attached). In contrast, for high concentration (w ≥ 8wt% for PVA135 and 
w ≥ 12wt% for PVA92), shear thinning is observed at high shear rate, for which the 
data are fit to the Carreau model (see curves),5
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where 0 is the zero-shear viscosity,  is a characteristic relaxation time for shear 
thinning to occur, and m characterizes power law behavior at high shear. 
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Figure S1: plots of shear viscosity  as a function of shear rate  for the PVA92 and �̇�

PVA135 aqueous representative solutions with concentrations of PVA as indicated. 

III. Analysis of LVE reported by Narita and Indei: Since the concentration of PVA is 
similar to present study, we used MCPVA

-1/(3-1) and 0 ~ M2 ~ M
1+2 to estimate 

M14.1kDa and 0 = 0.13s for the 5.5wt% PVA89 (Mw = 89kDa) solution on a 
basis of Mξ  = 16.0kDa and 0 = 0.16s of the 5wt% PVA92 solution. s is assumed to 
be the same as that of the PVA92 sample. By taking  as the only fitting parameter, 
we can fit LVE as shown in Figure S2. During the fitting, we tried to fit both G" and 
G' for the samples of [borax] ≥ 1.7mM. Nevertheless, for samples having [borax] ≤ 
1.2mM, the similar agreement cannot be achieved for G" and G', where we try to fit 
G" that is less vulnerable to the inertia effect than G'.
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Figure S2: Storage and loss moduli, G' and G" as function of angular frequency  
reported by Narita and Indei. The symbols are experimental results and the curves are 
fitting curve of the reversible gelation model, with degree of gelation  as an 
adjustable parameter. For the two samples having 0.8mM and 1.2mM borax, the 
fitting can only be achieved simultaneously for G' and G", the fitting is focused on G" 
that is less vulnerable to instrument inertia. 
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