Supporting Information

Redox Sensitive Protein Droplets from Recombinant Oleosin

Ellen H. Reed and Daniel A. Hammer

 Table S1. Oleo30G and Oleo30G-cys mutants' protein sequences.

	Sequence		
Oleo30G	G S T T T Y D R H H V T T T Q P Q Y R H D Q H T G D R L T H P Q R Q Q Q G P S T G K L A L G A T P L F G V I G F S P V I V P A M G I A I G L A G V T G F Q R D Y V K G K L Q D V G E Y T G Q K T K D L G Q K I Q H T A H E M G D Q G Q G Q G Q G G G K E G R K E G G K L E H H H H H		
Oleo30G_S2C	G		
Oleo30G_T3C	G S C T T Y D R H H V T T T Q P Q Y R H D Q H T G D R L T H P Q R Q Q Q G P S T G K L A L G A T P L F G V I G F S P V I V P A M G I A I G L A G V T G F Q R D Y V K G K L Q D V G E Y T G Q K T K D L G Q K I Q H T A H E M G D Q G Q G Q G Q G G G K E G R K E G G K L E H H H H H		
Oleo30G_T4C	G S T C T Y D R H H V T T T Q P Q Y R H D Q H T G D R L T H P Q R Q Q Q G P S T G K L A L G A T P L F G V I G F S P V I V P A M G I A I G L A G V T G F Q R D Y V K G K L Q D V G E Y T G Q K T K D L G Q K I Q H T A H E M G D Q G Q G Q G Q G G G K E G R K E G G K L E H H H H H		
Oleo30G_T5C	G S T T C Y D R H H V T T T Q P Q Y R H D Q H T G D R L T H P Q R Q Q Q G P S T G K L A L G A T P L F G V I G F S P V I V P A M G I A I G L A G V T G F Q R D Y V K G K L Q D V G E Y T G Q K T K D L G Q K I Q H T A H E M G D Q G Q G Q G Q G G G K E G R K E G G K L E H H H H H		
Oleo30G_T12C	G S T T T Y D R H H V C T T Q P Q Y R H D Q H T G D R L T H P Q R Q Q Q G P S T G K L A L G A T P L F G V I G F S P V I V P A M G I A I G L A G V T G F Q R D Y V K G K L Q D V G E Y T G Q K T K D L G Q K I Q H T A H E M G D Q G Q G Q G Q G G G K E G R K E G G K L E H H H H H		
Oleo30G_T24C	G S T T T Y D R H H V T T T Q P Q Y R H D Q H C G D R L T H P Q R Q Q Q G P S T G K L A L G A T P L F G V I G F S P V I V P A M G I A I G L A G V T G F Q R D Y V K G K L Q D V G E Y T G Q K T K D L G Q K I Q H T A H E M G D Q G Q G Q G Q G G G K E G R K E G G K L E H H H H H		
Oleo30G_S39C	G S T T T Y D R H H V T T T Q P Q Y R H D Q H T G D R L T H P Q R Q Q Q G P C T G K L A L G A T P L F G V I G F S P V I V P A M G I A I G L A G V T G F Q R D Y V K G K L Q D V G E Y T G Q K T K D L G Q K I Q H T A H E M G D Q G Q G Q G Q G G G K E G R K E G G K L E H H H H H		

Figure S1. SDS-PAGE gels of (A) Oleo30G, (B) Oleo30G_S2C, (C) Oleo30G_T3C, (D) Oleo30G_T4C, (E) Oleo30G_T5C, (F) Oleo30G_T12C, (G) Oleo30G_T24C, (H) Oleo30G_S39C. Gels Indicate that proteins were pure and at the expected molecular weight after IMAC purification. Faint bands can be seen at double the expected molecular weight due to formation of a disulfide bond while running on the gel.

Figure S2. MALDI mass spectra of (A) Oleo30G, (B) Oleo30G_S2C, (C) Oleo30G_T3C, (D) Oleo30G_T4C, (E) Oleo30G_T5C, (F) Oleo30G_T12C, (G) Oleo30G_T24C, (H) Oleo30G_S39C. Mass/charge ratio of the peak corresponding to singly charged protein is shown on plots. The second peak at half of the mass/charge ratio corresponds to the doubly charged protein.

	Expected MW	Measured MW	Difference
Oleo30G	15,026.63	15,029.64	3.01
Oleo30G_S2C	15,042.69	15,047.73	5.04
Oleo30G_T3C	15,028.66	15,029.27	0.61
Oleo30G_T4C	15,028.66	15,031.23	2.57
Oleo30G_T5C	15,028.66	15,029.78	1.12
Oleo30G_T12C	15,028.66	15,027.66	1.00
Oleo30G_T24C	15,028.66	15,035.41	6.75
Oleo30G_S39C	15,042.69	15,044.00	1.31

Table S2. Oleo30G and Oleo30G-cys mutants' expected molecular weights and molecular weights measured by MALDI-TOF-MS.

Figure S3. (A) Circular dichroism spectra of Oleo30G (green) and Oleo30G_S2C (blue). (B) Circular dichroism analysis of Oleo30G and Oleo30G_S2C. No meaningful difference in CD spectra was observed between the two proteins. Both proteins were predicted to be about 30% disordered. There were also a substantial percentage turns and β -strands predicted. Only a small percentage (<10%) of the proteins are predicted to be α -helical likely due to the elimination of hydrophobic α -helical sections from the WT oleosin to form Oleo30G.

Figure S4. DLS traces of Oleo30G and Oleo30G-cys mutants. Curves are offset for clarity. Oleo30G and Oleo30G-cys mutants all showed a single peak around 20 nm. This indicates that these molecules likely form spherical micelles with a hydrodynamic diameter of about 20 nm.

	d [nm]	PDI
Oleo30G	18.62	0.193
Oleo30G_S2C	22.27	0.202
Oleo30G_T3C	21.54	0.142
Oleo30G_T4C	21.47	0.140
Oleo30G_T5C	20.56	0.118
Oleo30G_T12C	20.44	0.172
Oleo30G_T24C	19.86	0.151
Oleo30G S39C	21.07	0.097

Table S3. Oleo30G and Oleo30G-cys mutants' hydrodynamic diameter and polydispersity index as measured by DLS.

Figure S5. Pyrene fluorescence assay of (A) Oleo30G and (B) Oleo30G_S2C. The ratio of the intensities of the of the first and third peak of the emission spectrum is plotted against the protein concentration. The red line is a sigmodal curve fit to the data. The critical micelle concentration (cmc) was taken as the inflection point of the sigmodal curve. Oleo30G had a cmc of 9.36 μ M and Oleo30G_S2C had a cmc of 7.30 μ M.

Table S4. Size and number density of Oleo30G and Oleo30G-cys droplets. Protein solutions were at a concentration of 80 μ M protein in DPBS with 1 mM DTT. Samples were chilled on ice for 10 minutes before transferring to chambered coverglass coated with pluronic F-127. Images were taken at the coverglass. Droplet sizes were determined using imageJ. Averages were taken of multiple experiments for six total fields of view (228 x 228 μ m per field of view). Droplet sizes are \pm standard deviation of all droplets measured. Droplet number density are \pm standard deviation of six fields of view.

	Droplet Size (µm)	Droplets per 100 µm ²
Oleo30G_S2C	3.33 ± 1.32	1.48 ± 0.21
Oleo30G_T3C	3.07 ± 1.08	0.31 ± 0.06
Oleo30G_T4C	3.24 ± 1.72	0.57 ± 0.20
Oleo30G_T5C	2.98 ± 1.66	0.55 ± 0.30
Oleo30G_T12C	2.63 ± 1.20	0.44 ± 0.05
Oleo30G_T24C	2.56 ± 1.40	0.42 ± 0.18
Oleo30G_S39C	1.81 ± 1.19	0.24 ± 0.05
Oleo30G	1.56 ± 1.13	0.17 ± 0.07

Figure S6. UV-vis spectroscopy traces of (A) Oleo30G_S2C, (B) Oleo30G_T3C, (C) Oleo30G_T4C, (D) Oleo30G_T5C, (E) Oleo30G_T12C, (F) Oleo30G_T24C, (G) Oleo30G_S39C, (H) Oleo30G. Protein solutions were at a concentration of 80 μ M protein in DPBS with 1 mM DTT. Measurements were taken starting at 37 °C and cooling at a rate of 1 °C per minute. Measurements were taken in increments if 0.5 °C. For clarity, data is shown only for 25 °C and below. Triplicates are shown for each Oleo30G-cys mutant.

Figure S7. UV-vis spectroscopy traces of (A) Oleo30G_S2C, (B) Oleo30G_T3C, (C) Oleo30G_T4C, (D) Oleo30G_T5C, (E) Oleo30G_T12C, (F) Oleo30G_T24C, (G) Oleo30G_S39C. Solutions were at a concentration of 80 μ M protein in DPBS with 1 mM DTT. Measurements were taken starting at 37 °C and cooling at a rate of 1 °C per minute to a final temperature of 0 °C (black curves) then warming at 1 °C per minute to a final temperature of 42 °C (grey curves). Measurements were taken in increments if 0.5 °C.

Figure S8. UV-vis spectroscopy traces of (A) Oleo30G_S2C, (B) Oleo30G_T3C, (C) Oleo30G_T4C, (D) Oleo30G_T5C, (E) Oleo30G_T12C, (F) Oleo30G_T24C, (G) Oleo30G_S39C. Solutions were at a concentration of 80 μ M protein in DPBS with 1 mM DTT. β ME was added to the protein solution to a final concentration of 80 mM. Measurements were taken cooling at a rate of 1 °C per minute to a final temperature of 0 °C. Measurements were taken in increments if 0.5 °C.

Table S5. Size and number density of Oleo30G, Oleo30G_S2C and blend droplets. Protein solutions were at a concentration of 80 μ M protein in DPBS with 1 mM DTT. Samples were chilled on ice for 10 minutes before transferring to chambered coverglass coated with pluronic F-127. Images were taken at the coverglass. Droplet sizes were determined using imageJ. Averages were taken of multiple experiments for six total fields of view (228 x 228 μ m per field of view). Droplet sizes are ± standard deviation of all droplets measured. Droplet number density are ± standard deviation of six fields of view.

	Droplet Size (µm)	Droplets per 100 µm ²
Oleo30G_S2C	3.33 ± 1.32	1.48 ± 0.21
75:25 Oleo30G_S2C:Oleo30G	3.38 ± 1.89	0.61 ± 0.07
50:50 Oleo30G_S2C:Oleo30G	2.19 ± 1.47	0.68 ± 0.14
25:75 Oleo30G_S2C:Oleo30G	2.09 ± 1.45	0.37 ± 0.07
Oleo30G	1.56 ± 1.13	0.17 ± 0.07