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Figure S1. The transmission electron microscopy image of a composite actin/vimentin network

illustrates that both biopolymers co-polymerize under the same conditions (here polymerization for

20 min at 37 ◦C) forming an interwoven network, which was subsequently fixed with Glutaraldehyde

for imaging. Arrow heads indicate single actin (red) and vimentin (green) filaments. The scale bar

is 200 nm.
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Figure S2. Differential shear modulus K rescaled by its linear value Klin versus strain for different

network compositions. Thick dashed lines are obtained from the mean stress-strain curves. (A),

vimentin 1 g/l. (B), vimentin 0.75 g/l actin 0.125 g/l. (C ), vimentin 0.5 g/l actin 0.25 g/l. (D),

vimentin 0.25 g/l actin 0.375 g/l. (E), actin 0.5 g/l. (F), Linear differential shear modulus Klin

versus plateau modulus G0 = G′(f = 1 Hz).
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Figure S3. (A), Shown is the tube width versus concentration in pure actin (red) and pure vimentin

(green) networks with the black line indicating the scaling predicted by the tube model with a power

law exponent of −3/5. (B), Mesh size versus rescaled concentration in pure actin (red) and pure

vimentin (green) networks are displayed with black dashed line indicating the scaling predicted by

the tube model with a power law exponent of −0.5. Data points in A and B are the weighted mean

of all filaments within one sample. Error bars represent the standard deviation of the weighted

mean.
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Figure S4. Length distribution of the fluorescently labeled actin and vimentin filaments in the

composite and pure actin and vimentin samples presented in Fig. 2B in the main text. The number

of filaments is n = 136 for F-actin and n = 153 for vimentin IF.
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Figure S5. Pseudo plateau modulus G0 = G′(f = 1 Hz). Data points are the mean values with

standard deviation. Black line are the results from the superposition described by Eq. 4 in the

main text.
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Figure S6. Loss factor tan(φ) = G′′/G′ over frequency. Data points are the mean values of all

measurements. Straight lines are the results of the GWLC fits.

4



   1 0.75  0.5 0.25    0
Vimentin Concentration [g/l]

0 0.125 0.25 0.375 0.5
Actin Concentration [g/l]

0

0.5

1

1.5

2

2.5

3

C
rit

ic
al

 S
tr

ai
n

Peak 1
Peak 2

Figure S7. Critical strain γcrit defined as the strain of a peak in the differential modulus K. Data

points are the mean values with standard deviation. Peak 1 in composite network is defined as the

peak with the smaller γcrit. This shows, that peak 1 can be attributed to the underlying F-actin

network while peak 2 can be attributed to the underlying vimentin IF network.
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Figure S8. Sketch of the bimodal energy-landscape used for modeling weak reversible binding

mechanisms. To transition from the closed to the open state, an energy barrier of height ∆E has to

be overcome.
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Figure S9. MSD of the filament center parallel to the tube for actin (dark red) and vimentin (dark

green) filaments rescaled by the tube width a. Thick lines are the median of all actin (red) and

vimentin (green) filaments of the respective network composition. (A) Pure actin at 0.5 g/l and

pure vimentin at 1 g/l, (B) actin 0.125 g/l vimentin 0.75 g/l, (C ) actin 0.25 g/l vimentin 0.5 g/l,

and (D) actin 0.375 g/l vimentin 0.25 g/l.
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Figure S10. Histogram of the MSD at a lag time τ = 2 s rescaled by tube width a of the actin and

vimentin filaments in composite and pure actin and vimentin networks presented in Fig. 5 of the

main text. The median MSD(τ = 2 s)/a is 4.1 µm for F-actin with n = 59 and 2.0 µm for vimentin

IF with n = 55. Despite a strong filament to filament variation, both distributions are significantly

different with p = 9× 10−6 obtained from a Kolmogorow-Smirnow test.

linear rheology:

temperature T 293 K

contour length actin L 16 µm

contour length vimentin L 18 µm

persistence length actin lp 10 µm

persistence length vimentin lp 2 µm

drag coefficient per length ζ⊥ 2 mPa·s

mesh size of the pure networks ξ0 1 µm

non-linear rheology:

characteristic width of a free energy well δ 0.9 nm

energy difference between the bound and the unbound state U 2.5 kBT

control parameter for filament lengthening S 0.3

distance between bound and unbound state ∆x 2 nm

Table S I. Fixed parameters for the description of the linear rheology and non-linear rheology.
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The glassy wormlike chain

For the theoretical description of the measured data we used the glassy wormlike chain

model (GWLC) [1]. As a simple extension of a standard polymer model – the wormlike

chain (WLC) – the GWLC describes the time-dependent rheological properties of cells as

well as semiflexible polymer networks by modeling the interactions of a test chain with its

soft environment via an exponential stretching of the WLC mode relaxation spectrum. In

particular the WLC mode relaxation times τWLC
n = ζ⊥/(κπ4/λ4

n + fπ2/λ2
n) are stretched

according to:

τGWLC
n =


τWLC
n if λn ≤ Λ

τWLC
n eεNn if λn > Λ.

(1)

Here, λn = L/n is the (half-) wavelength of the n-th mode, L the contour length of the

test filament, Λ the typical distance between two interactions, f describes a homogeneous

backbone tension accounting for existing pre-stress, ζ⊥ the transverse drag coefficient, and κ

the bending rigidity which is related to the filament’s persistence length lp via κ = lpkBT .

The number Nn = λn/Λ− 1 of interaction points associated to the n-th mode is set to 0 for

modes shorter than Λ. ε is the stretching parameter controlling how strong the modes are

slowed down by interactions with the environment.

The physical picture behind this scheme is that of a test polymer diffusing in a rough

free energy landscape created by the surrounding polymers. In this picture the interactions

correspond to the wells of this landscape separated by energy barriers of typical height ε. The

GWLC mode relaxation spectrum given in equation 1 can then be introduced in a consistent

way by assuming that in the considered free energy landscape the mode-number-dependent

friction is given by:

ζ⊥(n) =


ζ⊥ if λn ≤ Λ

ζ⊥eεNn if λn > Λ.
(2)
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Linear rheology

In the frequency domain, the micro-rheological, linear response function χ(ω) of the

GWLC to a point force at its ends can be expressed as the sum of mode contributions:

χ(ω) = L4

π4l2pkBT

∞∑
n=1

1
(n4 + n2f/fE) (1 + iωτGWLC

n /2) . (3)

From χ(ω), the complex linear modulus G∗(ω) in the high frequency limit can be obtained

assuming affine deformations:

G∗(ω) = Λ
5ξ2χ(ω) . (4)

Within these expressions, fE = κπ2/L2 is the Euler buckling force and ξ denotes the mesh

size. The sum converges rapidly for λn > Λ so that high precision can be obtained by adding

a small number of mode contributions.

Non-linear rheology

To model inelastic filament lengthening, we assume that the increase of the filaments

contour length is related to a slippage of proto-filaments, which requires the opening of

transient bonds between proto-filaments or the unfolding of protein domains. Following

standard procedures [2] based on the Bell-Evans-model [3], we represent the force dependent

dynamics of such weak reversible binding mechanisms (to which we refer as bonds) via a

first order rate equation for the time dependent probability ν(t, f) that a bond is found in

the closed state in the presence of an external force f :

ν̇(t, f) = −k-(f)ν(t, f) + k+(f)(1− ν(t, f)), (5)

where the force dependency of the transition rates k-(f) and k+(f) is chosen according to

the Bell model [4]:

k-(f) = k0 · e∆E+β∆xcf (6)

k+(f) = k0 · e∆E−β∆xof+U , (7)

where k0 is a microscopic attempt rate. The underlying picture of this description bonds is

an ensemble of virtual particles diffusing in an asymmetric bimodal potential (Fig. S6). The

two energy minima at x = 0 and x = ∆xo + ∆xc describe the closed and the open state of
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the bond, respectively. The energetic minimum representing the closed state minimum is set

to zero and that of open state to U . The two minima are separated by an energy barrier of

height ∆E at x = ∆xc.

To link ν(t, f) to the GWLC we replace the constant contour length L by a contour length

L(ν(t, f)) that depends on the state of the bonds. In particular we choose a linear coupling:

L→ L(ν∞(t, f)) = L0 [1 + S (ν∞(0, 0)− ν∞(t, f))] , (8)

where S is the coupling constant. This simplifying ansatz (Eq. 8) rests on the assumption

that L(ν∞(t, f)) has the character of a slow variable. It is employed because here, we are

only interested in a minimal description whereas the full problem of combining a description

of a weak reversible binding mechanism with a polymer model on microscopic grounds is in

general very complicated and beyond the scope of this paper.

Further we consider only the limit of an externally applied forces changing slowly compared

to 1/(k0exp(∆E)) so that ν(t, f) has enough time to equilibrate and thus, is well approximated

by the time-independent equilibrium value νeq(f):

νeq(f) = (1 + exp[−U + ∆xf ])−1, (9)

with ∆x = ∆xc+∆xo. Combining Eq. 9 with Eq. 8 yields an expression for a force-dependent

filament length L(f) then reads:

L(f) = L0

[
1 + S · sinh(f∆x/2)

cosh(U − f∆x/2) + sinh(f∆x/2)

]
. (10)

which can be plugged in the description of the differential modulus described above. The

resulting differential modulus then shows an initial softening regime, caused by an increasing

L(f) as observed in the experiments.
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