Electronic Supplementary Material for Three-Dimensional Multicomponent Vesicles: Dynamics \& Influence of Material Properties

Prerna Gera* and David Salac ${ }^{\dagger}$
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260-4400, USA

(Dated: May 26, 2018)

S1. CALCULATION OF INCLINATION ANGLE AND DEFORMATION PARAMETER

The shape and orientation of the three-dimensional vesicles are obtained via eigenvalues of the inertia matrix. Let Ω^{-}be the region enclosed by the vesicle membrane. The inertia matrix is given by

$$
\boldsymbol{I}_{0}=\left[\begin{array}{ccc}
\int_{\Omega^{-}} \hat{y}^{2}+\hat{z}^{2} \mathrm{dV} & -\int_{\Omega^{-}} \hat{x} \hat{y} \mathrm{dV} & -\int_{\Omega^{-}} \hat{x} \hat{z} \mathrm{dV} \tag{S1}\\
-\int_{\Omega^{-}} \hat{x} \hat{y} \mathrm{dV} & \int_{\Omega^{-}} \hat{x}^{2}+\hat{z}^{2} \mathrm{dV} & -\int_{\Omega^{-}} \hat{y} \hat{z} \mathrm{dV} \\
-\int_{\Omega^{-}} \hat{x} \hat{z} \mathrm{dV} & -\int_{\Omega^{-}} \hat{y} \hat{z} \mathrm{dV} & \int_{\Omega^{-}} \hat{x}^{2}+\hat{y}^{2} \mathrm{dV}
\end{array}\right]
$$

where $\hat{x}=x-\bar{x}, \hat{y}=y-\bar{y}$, and $\hat{z}=z-\bar{z}$. The center of the vesicle, $(\bar{x}, \bar{y}, \bar{z})$ is defined as

$$
\begin{equation*}
\bar{x}=\frac{1}{V} \int_{\Omega^{-}} x \mathrm{dV}, \quad \bar{y}=\frac{1}{V} \int_{\Omega^{-}} y \mathrm{dV}, \quad \bar{z}=\frac{1}{V} \int_{\Omega^{-}} z \mathrm{dV} \tag{S2}
\end{equation*}
$$

while the volume is given by $V=\int_{\Omega^{-}} d V$. In all cases the integrals are calculated using a numeric Heaviside function and the level-set describing the interface:

$$
\begin{equation*}
\int_{\Omega^{-}} f \mathrm{dV} \approx \sum_{i j k}\left(1-H\left(\phi_{i j k}\right)\right) f_{i j k} h_{x} h_{y} h_{z} \tag{S3}
\end{equation*}
$$

where $f_{i j k}$ is the value of the function to be integrated at a grid point, h_{x}, h_{y}, and h_{z} are the grid spacings in the $x-, y-$, and z-directions, respectively, and $H(\phi)$ is the Heaviside function [1].

The symmetric matrix \boldsymbol{I}_{0} has three real eigenvalues and orthogonal eigenvectors [2]. The inclination angle is defined as the angle between the eigenvector corresponding to the largest eigenvalue and the x-axis. Following the definition of deformation parameter, or asphericity, is defined as $[3,4]$

$$
\begin{equation*}
D=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }} \tag{S4}
\end{equation*}
$$

where $\lambda_{\max }$ is the largest eigenvalue while $\lambda_{\min }$ is the smallest eigenvalue.

[^0]
S2. DESCRIPTION OF MOVIES

There are four movies included in this work. Each corresponds to a result presented in the main text and all have $\bar{c}=0.4$. The movies includes are:

TABLE S1: Table of movies

File Name	Main Text Figure	α	κ_{c}^{B}	Pe
FIG2Movie.mov	2	20	0.6	0.2
FIG3Movie.mov	3	20	0.7	0.5
FIG4Movie.mov	4	20	0.8	1.0
FIG10Movie.mov	10	0.5	0.4	0.3

[1] J. D. Towers, Journal of Computational Physics, 2009, 228, 3478-3489.
[2] A. Laadhari, P. Saramito and C. Misbah, Journal of Computational Physics, 2014, 263, 328-352.
[3] L. Lu, W. J. Doak, J. W. Schertzer and P. R. Chiarot, Soft Matter, 2016, 12, 7521-7528.
[4] S. Messlinger, B. Schmidt, H. Noguchi and G. Gompper, Phys. Rev. E, 2009, 80, 011901.

[^0]: *Present Address: Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, USA
 ${ }^{\dagger}$ Corresponding Author: davidsal@buffalo.edu

