Supplementary information

SI 1 Functional group density profile

Figure SI 1.1: Semilogarithmic plot of the density profile of the functional groups of a brush with $N_{\rm r} = 50$, $N_{\rm n} = 50$, r:n=50:50 and $\sigma_{\rm g} = 0.16$ with the responsive polymer in poor solvent conditions ($\varepsilon_{\rm rr} = 1.0$). The vertical lines indicate $h_{\rm brush}$ determined from the insertion energy profiles. The nonresponsive polymers have purely repulsive interaction (filled triangles, solid vertical line) or have a weak attraction with $\varepsilon_{\rm nn} = 0.16$ (open triangles, dashed vertical line). In both cases, the probability that the functional group was at $z > h_{\rm brush}$ was lower than what could be measured in a simulation with a periodic box of 24×24 polymers and a simulation time of 25000τ .

SI 2 Local energy profiles

Figure SI 2.1: Lateral inhomogeneities turn the energy insertion profile in a function of brush position, as illustrated here for a binary brush with with $N_{\rm r} = 114$, $N_{\rm n} = 50$, $\sigma_{\rm g} = 0.08$ and r:n=20:80. These insertion energy profiles of the upper brush region are obtained by positioning the sphere with a radius of 5σ above a responsive polymer cluster (red circles) or above a region rich in nonresponsive polymers (blue squares).

SI 3 Cluster area for various brush compositions

Figure SI 3.1: Histogram showing for various brush compositions the frequency at which clusters of a certain area A occur. In all cases, $N_{\rm r} = 114$, $N_{\rm n} = 50$, $\sigma_{\rm g} = 0.16$, $\varepsilon_{\rm rr} = 1.0$ and the lateral periodic box size is 60σ by 60σ .

SI 4 Relative functionality switching sensitivity for $R_{sphere} = 3\sigma$

Figure SI 4.1: Relative functionality switching sensitivities determined by inserting an element with a radius of $R_{\text{sphere}} = 3\sigma$. The values for the brushes with long nonresponsive polymers are not included, because the probability of finding a functional group at the brush surface was lower than we could measure both in good and poor solvent conditions.