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Heterogeneous growth plays an important role in the shape and pattern formation of thin elastic
structures ranging from the petals of blooming lilies to the cell walls of growing bacteria. Here
we address the stability and regulation of such growth, which we modeled as a quasi-static time
evolution of a metric, with fast elastic relaxation of the shape. We consider regulation via coupling
of the growth law, defined by the time derivative of the target metric, to purely local properties of
the shape, such as the local curvature and stress. For cylindrical shells, motivated by rod-like E.
coli, we show that coupling to curvature alone is generically linearly unstable and that additionally
coupling to stress can lead to stably elongating structures. Our approach can readily be extended
to gain insights into the general classes of stable growth laws for different target geometries.

APPENDIX A: MICROSCOPIC TOY MODELS

In this section we will consider various toy (or semi-
realistic!) models of growth processes. This will give us
valuable insight into how the various terms in the growth
law might appear and the order of magnitude of their co-
efficients.

The first model is inspired by the process of swelling
polymers films [7, 8]. When polymer films are exposed to
a solvent, the solvent molecules will diffuse through the
pores in the film and cause swelling of the material. The
local rate of swelling can be controlled by different exter-
nal stimuli such as light and chemical gradients. In the
present model we will consider the heterogeneous swelling
caused by the curvature of the shells, assuming that only
the inner surface is exposed to the solvent.

Since only one side of the shells is exposed then the
rate of solvent absorption will depend on the average pore
area in the exposed surface. In order to understand the
effect of curvature on the exposed pore area, we express
the exposed surface Xexp in terms of the mid-surface of
the shell in a manner consistent with the Kirchhoff-Love
assumptions. Specifically,

Xexp = X− τ

2
N̂. (A1)

We can use this relation to relate the area element in the
exposed surface dAexp to the area element in the mid-
surface dA using the relation dAexp ≡

√
gexp du1du2.

Using Eq. (A1), we can relate the two metrics using the
formula

gexpij = gij + τ bij +
τ2

4
b`i b`j . (A2)

Then, using this relation and the identity det(M) =
exp[Tr{log(M)}], we can find the relation between the
two area elements as

dAexp

dA
= 1 + τH +

τ2

4
K. (A3)
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Finally, allowing for the possibility of strain εij , we can
relate the target and actual mid-surface area elements as

dA =
(

1 +
ε

2
+O

(
ε2
))

dĀ, where ε = ḡij εij (A4)

In these systems the growth process is isotropic, mean-
ing that only terms of the form F1(H,K, ε) gij will con-
tribute. Since curvature and strain change the area el-
ement of the inner surface by the given geometric fac-
tor, we conclude that the average exposed pore area
will be affected by the same factor. Finally, assuming
that the absorption rate in the absence of curvature and
strain is given by α1, we can write the growth law as
∂t(dĀ)/dAexp = α1.

Putting all of this together we get in the curved case
that

F1(H,K) = α1

(
1 + τH +

τ2

4
K

) (
1 +

ε

2

)
. (A5)

Note that the term H2 does not appear in this formula
due to cancellations in the calculation of the determi-
nant. In addition, the Ricci flow term is suppressed by
an additional power of the thickness. Interestingly, the
strain coupling term ε gij in the growth law will have a
coefficient σ2 = α1/2.

The terms proportional to the tensors bij and εij are
not generated if the growth is isotropic.

Next, we describe toy models where the growth rate
of a shell depends on the local concentration of some
particle on the surface. This is similar to E. coli where
the local concentration of the protein MreB affects the
growth rate of the cell wall [12]. Here we will describe a
simple model of passively diffusing particles on the sur-
face. The heterogeneity results from the dependence of
the adhesion energy on the local curvature [22, 23]. An-
other method for achieving heterogeneity would be active
particles moving inside or on the surface of the shell [24]

Fig. (B1) shows a simple diffusing particle composed
of two identical orthogonal filaments each with a natural
curvature κ̄ and length ¯̀. Assuming that the particles
adheres strongly to the surface we can take the realized
curvatures of the filaments (κR1, κR2) to be determined
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FIG. B1: Shows a ”molecule” composed of two perpendicular
filaments each with natural curvature κ̄ and length ¯̀diffusing
passively on the surface. The vector shown points to the
inside of the closed surface when the filament is attached.
The difference in density along the surface is due to biased
diffusion based on curvature dependence of adhesion energy

by the principle curvatures of the surface and the an-
gle θ between the filaments and the principle directions.
Explicitly,

κR1 = cos(θ)2 κ1 + sin(θ)2 κ2, (A6)

where κ1,2 are the principle curvatures of the surface.
κR2 follows a similar expression with θ → π/2 − θ. If
we take the bending energy of each filament to be Ebi =
Kb ¯̀ (κRi − κ̄)2, then the total energy in terms of the
Gaussian and mean curvatures will be

Eb = Kb ¯̀ κ̄2 ×(
2− 4

H

κ̄
+

3H2 −K
κ̄2

+
H2 −K
κ̄2

cos(4θ)

)
. (A7)

We can easily see that this energy is minimized when
θ = π/4. The steady state concentration of randomly
diffusing particles will be given by a Boltzmann factor
ρ ∝ exp(−β Eb). We also assume, as we have throughout
the paper, that the curvatures of the surface are small
compared to the natural curvature of the filament H <<
κ̄. Assuming a growth rate proportional to concentration
∂t(dA)/dA = C ρ, we get finally that

∂tḡij =

(
α1 + β1 a0H + δ1

H2

κ̄2
+O

(
H

κ̄

)3
)
gij , (A8)

were α1 ≡ C ρ0 with ρ0 being the concentration of the
particles when the surface is flat and C being a constant
relating the growth rate to the concentration. We also
defined

β1 ≡
4 β Kb

¯̀ κ̄ α1

a0
≈ 1.3 α1, (A9)

δ1 ≡
β1 (κ̄ a0 β1 − α1)

κ̄ a0 α1
, (A10)

where the parameter β1 was estimated at room tem-
perature, for an MreB-like filament with 10 monomers
(¯̀≈ 50nm) and following Ref. [25], Kbκ̄

2 ≈ 8.2× 10−13.
Finally, we assumed that a0κ̄ = 0.1.

It is intriguing – keep in mind that the estimate could
be wrong by a couple of orders of magnitude in either
direction – that this number came out to be of order 1.
Although we don’t consider strain coupling in this model,
we expect it to also behave as σ/α1 ∼ O(1), just as it
did in the absorption model above. The fact that σ is
on the same order as α1 was a natural consequence of
the growth. On the other hand, β1 ∼ α1 depends on the
actual value of temperature and rigidity of MreB.

As mentioned in appendix (??), the term H gij is de-
pendent on the definition of the normal to the surface.
It appears in Eq. (A8) because we assumed the filament
attaches to the inner surface with the arrow pointing op-
posite to N̂ . If we relax this assumption or consider an
energy like Eb ∼ (κ2R − κ̄2)2, this term disappears and
the leading order terms will be H2gij and Kgij .

APPENDIX B: SCALING BEHAVIOR FOR
SMALL WAVELENGTHS

In this section, we will study more closely the growth of
modes with small wavelengths, namely qP →∞. We will
gain insight by contrasting the finite and zero thickness
cases, starting with the latter.

As can be seen from the zero thickness growth rate
derived in the main text, small wavelength modes, qP →
∞, can be stabilized by requiring Γ2 > 0. This term
ultimately comes from the growth terms Hgij , Hbij and
Kgij in the growth law. Furthermore, we can easily show
that as qP →∞, these terms scale as

H gzz ∼ H bzz ∼ K gzz ∼ q2P ρmq. (B1)

We can also easily see, from the isometric solutions given
in the main text, that ρmq ∼ Gφφ. This, together with
Eq. (B1) leads to the stabilizing term q2P Γ2 in the ex-
pression for the growth rate.

Now we can understand qualitatively how finite thick-
ness would change this result. Bending energy suppresses
deformations that have wavelengths comparable to thick-
ness, specifically, we get ρmq ∼ Gφφ/q

4
P . Therefore the

stabilizing term proportional to Γ2 would disappear as
qP → ∞. Next, we examine this case a little more con-
cretely.

First, we minimize the energy with a given metric de-
formation Gij , and solve for the displacements ρmq, hmq
and ψmq. we get, for example, that

ρmq ∼ O
(
Gφφ
q4P

)
+O

(
Gzφ
q5P

)
+O

(
Gzz
q6P

)
. (B2)

We then plug these solutions back into the growth law
and get, for example, that ∂tGφφ ∝ −Γ2 Gφφ/q

2
P . Thus

we see that Gφφ can still be stabilized if Γ2 > 0 and in
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what follows, we set Gφφ → 0. The other two equations
give

∂tGzz ∼ 2 R0 Gzz and ∂tGzφ ∼ 2 R
Gzz
qP

. (B3)

Finally, combining Eqs. (B3) and (B1) we discover that

∂tρmq
ρmq

= 4R0 +O

(
1

qP

)
, (B4)

which validates the result obtained in the main text.
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