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Mass transfer dynamics in the dissolution of Taylor bubbles

Ghata M. Nirmal, Thomas F. Leary and Arun Ramachandran

I. CONCENTRATION GRADIENT IN THE BULK LIQUID SEGMENT

In the presence of a region of closed streamlines1�3, one cannot invoke the simplifying

assumption of representing the bulk liquid segment as a region with a uniform solute concen-

tration; concentration gradients have to be accounted for in this region. This is incorporated

in the proposed model by the transformation(see Eqs 4.2 - 4.12 in Rhines & Young2) of the

unsteady state convective di�usive equation from a cylindrical coordinate system to a coor-

dinate system comprised of time and the volume enclosed by a streamsurface (see Eq.2.13).

Let ψ = f(r) be the streamfunction for a set of nested, closed axisymmetric streamsurfaces

in the cylindrical co-ordinates (see Fig. 1).

rtop 

rbottom 
r0 =  /!" 

l =   

z 

r 

dl  

dz  

dr  

Figure 1. Streamline plot for the top half of the bulk liquid segment of length βL = 5. The legend

represents the values of the streamfunction ψ.
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Consider the integral I of a scalar function F (r, z, θ), over a streamsurface, de�ned as,

I(ψ(r)) =

�
V (ψ)

F (r, z, θ)dV. (I.1)

Here, F (r, z, θ) is a scalar function, the volume refers to the volume enclosed by a particular

streamsurface and r, z and θ are the radial, applicate and angular coordinates respectively.

Following the approach of Rhines & Young2, from Gauss Divergence Theorem,

dI

dψ
=

�
S(ψ)

n.
∂r

∂ψ
FdS, (I.2)

where the normal n is ∇ψ/|∇ψ|, the di�erential area of a streamsurface dS = 2πrdl and

|∇ψ| = rq. The di�erential curvilinear co-ordinate, dl, is given by
√

(dr)2 + (dz)2 (see Fig.1)

and q is the magnitude of the net velocity given by
√
ur2 + uz2. Thus, we can show that

(using Green's Theorem),

dI

dψ
= 2π

�
L(ψ)

F

q
dl, (I.3)

Here, L(ψ) is the length of a streamline. Here, the axisymmetry of the geometry allows us

to describe each streamsurface as a streamline. This derivation allows us to carry out the

transformation by de�ning the average concentration across a streamsurface. Hence, the

average concentration along a streamline is

CB(ψ) =

�

L(ψ)

CB
dl

q

�

L(ψ)

dl

q

=

�

L(ψ)

CB
dl

q

T (ψ)
. (I.4)

Here, T (ψ) is the circulation time, i.e., the time required for the solute to travel along the

entire length (L(ψ)) of a streamline.

Substituting Eq.I.4 in the unsteady state convective di�usive equation,

�

L(ψ)

∂CB
∂t

dl

q
+

�

L(ψ)

q
∂CB
∂l

dl

q
= D

�

L(ψ)

∇2CB
dl

q
. (I.5)

The second term on the LHS is zero, since there is no variation in concentration along a
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streamline in the limit of large Peclet numbers. The above equation them simpli�es to

T (ψ)
∂CB

∂t
= D

�

L(ψ)

∇2CB
dl

q

=
D
2π

∂

∂ψ

[�
V (ψ)

∇2CBdV

]
=
D
2π

∂

∂ψ

�
S(ψ)

∇CB.ndS

(From Gauss Divergence Theorem)

=
D
2π

∂

∂ψ

�
S(ψ)

∂CB

∂ψ
∇ψ.ndS

=
D
2π

∂

∂ψ

�
L(ψ)

∂CB

∂ψ
2πr2qdl (I.6)

Here we can substitute for ∂CB

∂ψ
as a function of volume enclosed by a streamsurface (V ),

∂CB

∂ψ
=
∂CB

∂V

∂V

∂ψ
=
∂CB

∂V
2πT (ψ) (I.7)

Therefore, from Eqs.I.6 and I.7,

∂CB

∂t
=

∂

∂V

[
π2DD̂(ψ)

∂CB

∂V

]
(2.13)

The transformation to Eq.2.13 introduces a modi�ed di�usivity, D̂, de�ned as,

D̂(ψ) = 4ω(ψ)T (ψ). (I.8)

Here, ω(ψ) is the circulation along a streamline given by

ω(ψ) =

�

L(ψ)

r2qdl. (I.9)

D̂ can be determined for varying liquid segment lengths using the exact velocity distribu-

tion from the analytical solution4 at each instant of time, but this can be computationally

expensive. To reduce this cost, we propose a semi-empirical correlation for D̂ as a function of

βL using our understanding of the �ow physics. The �uid velocity in the radial direction(ur)

drops to 0 within a distance of R from the bubble caps. The �uid velocity in the appli-

cate direction(uz), rendered dimensionless with respect to the bubble velocity UB, is fully

developed after this length scale (R) and is given by

uz = 1− 2r2. (I.10)
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For long liquid segment lengths (βL >> 1), the contribution to ω and T can be, hence,

attributed only to �ow in the applicate direction. Using this approximation, the circulation

given by Eq.I.9 is simpli�ed to

ω(ψ) = βL(r2
top|1− 2r2

top|+ r2
bot|1− 2r2

bot|). (I.11)

Here, rtop and rbot are the radii that correspond to a particular streamline ψ (see Fig.1).

These are given by the roots of the following equation,

ψ =
1

2
(r4 − r2). (I.12)

In the inner regions of the vortex, the circulation time diverges as uz drops to 0 at r0 =

1√
2
. Here, the streamfunction reaches its maximum magnitude, |ψmax| = 1/8. A linear

perturbation around r0 assists us in determining the exact nature of this singularity. Let ε

be a small parameter de�ned as ε = r − r0. From Eq.I.10,

uz = u(0)
z + εu(1)

z = 1− 2r2
0 + ε(−4r0) +O(ε2) = ε(−4r0). (I.13)

Also, from Eq.I.12 the streamfunction is given by,

ψ = ψ(0) + εψ(1) + ε2ψ(2)

=
1

2

[
(r4

0 − r2
0) + ε(2r3

0 − r0) + ε2(6r2
0 − 1)

]
+O(ε4)

= ψmax + ε2. (I.14)

From Eq.I.14,

ε =
√
ψ − ψmax. (I.15)

From Eqs.I.13 and I.15, we propose an expression to describe the circulation time. Since

the liquid segments are long, we can ignore the circulation time arising from the radial

components and the circulation time is well described in this limit by,

T = L(ψ)/uz = 2βL/((−4r0ε)| =
aβL√

ψ − ψmax
. (I.16)

In the above equation, a is a constant that depends on βL.

In the outer regions of the vortex, as one approaches the bubble cap, the presence of a

stagnation point5 gives rise to a logarithmic singularity6. Therefore, for the outer streamlines,

T = b1 log(ψ) + b2. (I.17)
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From Eqs.I.16 and I.17, we propose the following expression for T ,

T =
aβL√

ψmax − ψ
+ b1 log(ψ) + b2. (I.18)

The �tting parameters a, b1 and b2 are the estimated by comparing Eq.I.18 to the numerically

predicted circulation time for di�erent liquid segment lengths. While b1 = −1.95± 0.08 and

b2 = 2.81± 0.25 are independent of βL, a portrays the following functionality,

a = 0.66− 0.4e−0.11βL . (I.19)

D̂ can be now determined, using Eqs.I.8,I.11 and I.18, for a given liquid segment length.

These numerical predictions were carried out in MATLAB 2017a. A gaussian mesh was

generated in the radial as well as applicate direction (to avoid erroneous results near the

stagnation point) with a maximum step size of 0.002. The velocity pro�le and the stream-

function were computed at these node points and the contour function was used to generate

the closed streamline contours for each value of ψ. T (ψ) (see Eq.I.18), V (ψ) =
�
πr2urdl and

ω(ψ) (see Eq.I.11) were computed for each contour using spline integration to subsequently

calculate D̂(ψ) using Eq.I.8. Fig.2 compares the numerical result of D̂(ψ) to that predicted

by the proposed correlation for βL = 20.
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Figure 2. Comparison of numerically predicted D̂ to a proposed correlation (Eqns.I.8,I.11 and I.18)

for βL = 20
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II. INITIAL CONCENTRATION DISTRIBUTION

This section describes the setup and execution of the two-dimensional, laminar �ow,

two-phase �ow simulation carried out in COMSOL Multiphysics R© 5.3a. Results from this

simulation enabled us to describe the initial dissolved gas concentration in the bulk liquid

segment after pinch-o� at the T-junction. The simulation was carried out in two steps.

First, the laminar, two-phase �ow through a T-junction microchannel (width 100 µm) was

modeled using the Level Set method. The inlet �ow rates of carbon dioxide and ethanol

were �xed at 300µL/s and 500µL/s respectively. The pressure was set to 0 at the outlet and

back�ow was suppressed. A direct(PARDISO), time-dependent solver was used to solve for

the velocity and the level set variable, φ. φ = 1 corresponds to the pure carbon dioxide phase

and φ = 0 corresponds to the ethanol phase. Next, results from the �rst step were used to

track dissolved gas concentration, c, during bubble formation by numerically integrating the

following partial di�erential equation,

(1− φ)
∂c

∂t
+∇.(−(1− φ)D∇c) + (1− φ)u.∇c+ φc = φ. (II.1)

Here, u is the velocity �eld. On substituting φ = 0 in Eq.II.1, we recover the unsteady state

convection di�usion equation to describe the dissolved gas concentration in the liquid phase.

On the other hand, φ = 1 corresponds to the gas phase. This step used a direct(PARDISO),

time-dependent solver and required adaptive mesh re�nement to minimize error. Results

from this simulation are summarized in Fig.2(a) and (b). Although these results give a

qualitative sense of the distribution of the dissolved gas, it is not possible to repeat these

simulations for every experiment owing to high computational cost. Therefore, an additional

set of simulations was carried out using COMSOL Multiphysics R© 5.3a for one unit cell to

investigate the evolution of the dissolved gas concentration pro�le in the liquid segment. In

this case, a moving wall boundary condition (at velocity −UB) was applied to the capillary

wall and laminar �ow was imposed. A direct(PARDISO), stationary solver was used to

evaluate the steady state velocity pro�le. Next, an unsteady state convection di�usion

equation was solved for a given Pe using the velocity pro�le obtained from the �rst step.

Here, the liquid segment continuously received solute from the bubble caps and a non-

uniform and asymmetric concentration was imposed as the initial condition (see Fig.2 (c)). A

direct(PARDISO), time-dependent solver was used to track the dissolved gas concentration.
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Results from this study are summarized in Fig.2(c).

III. NUMERICAL METHOD

The governing equations listed in section 2.1 for each of the regions in a unit cell were

used to predict the dynamic bubble lengths as a function of distance traveled in the capillary

for a given solubility, βL, initial βB and the steady state Pe and Ca (i.e., when the bubble

stops dissolving). In-house MATLAB scripts were used to carry out the integration (using

ode15s) for the following set of ordinary di�erential equations for each unit cell:

For the bubble volume:

1.

dρGVB,i
dt

= −kL,iAB,i(Csat − CB,i)− kL,iAB,i(Csat − CB,i+1)− 2πUB,iRB,iδi(CBF,i − CLF,i).

(2.18)

For the distance traveled by the ith bubble:

2.

dXi

dt
= UB,i (III.1)

For dissolved gas concentration in the ith liquid segment, a set of ODEs corresponding

to the grid of streamfunction values was integrated owing to the coordinate transformation

conducted in section 2.1.2 (see Eq.2.13). The central di�erence method was used to discretize

the dimensionless BLS volume (into smaller volumes ∆V) using 201 nodes (or streamlines).

Therefore, for jth streamline in the ith unit cell, the di�erential equation for the average

dissolved gas concentration is given by:

3.
∂CB,i

∂t
= π2 ∂

∂V

[
DD̂(ψ)

∂CB,i

∂V

]
, (2.13)

which can be discretized to give:

dCB,i(ψj)

dt
= π2DD̂j+1

CB,i(ψj+2)−CB,i(ψj)

2∆V
−DD̂j−1

CB,i(ψj)−CB,i(ψj−2)

2∆V

2∆V
(III.2)
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The boundary conditions, Eqs.2.14 and 2.15, were also discretized in a similar manner to

de�ne the ODEs for the outermost and innermost streamline. For each of these streamlines,

D̂ was calculated using Eqs.I.8,I.11 and I.18. This integration was carried out for 10 unit

cells (therefore, atleast 203∗ 10 ODEs) on an average to ensure periodicity in the gas bubble

lengths and dissolved gas concentration. The number of unit cells had to be increased

to a maximum of 35 for simulations involving high Pe and high Ca. The bubbles were

introduced periodically into the capillary, and the initial bubble length was de�ned such

that it starts dissolving only after pinch o�. To take the dissolution during bubble formation

into account, each BLS contained a �nite amount of dissolved gas whose pro�le (as a function

of streamfunction) was given by Eq.2.17. The BF and LF concentrations were computed at

each timestep using Eqs.2.6 and 2.10, respectively. After each integration step, the velocities

for each bubble in the frame of reference of the leading bubble was solved by �nding the root

of Eq.2.19. This information was used to dynamically update Pei, Cai (hence δi), βB,i, kL,i

and RB,i.

Fig.4 investigates the e�ect of the three major limitations of prior models in the literature

on the di�usivity predictions. To ignore cross-talk, CBF,i and CLF,i were �xed to be Csat

for every unit cell to ensure no mass transfer to and from the BF and the LF regions. To

disregard the concentration inhomogeneity, Eq.2.11 was used (instead of Eq.2.13) to compute

the average dissolved gas concentration in the BLS at each time step. Finally, to ignore the

change in bubble velocities, velocity of every bubble was set to be equal to the average

velocity. This average velocity was obtained by averaging the bubble velocity measured

from experiments over the distance that it underwent 95% of the total shrinkage. For the

comprehensive model that takes all the limitations into account, the numerical predictions

were carried out on the basis of the leading bubble's velocity, i.e., the velocity attained by a

bubble once it stops shrinking (steady state achieved). The bubble velocity at the entrance

(at the point of pinch o�) was then computed based on the shrinkage rates of the bubble

at the entrance and all the preceding bubbles. This computation step was faster for slowly

dissolving bubbles as opposed to those dissolving rapidly. Moreover, less number of unit

cells (10 as opposed to 35) were su�ce for slowly dissolving bubbles, leading to an additional

reduction in the computational load. Hence, the authors recommend the experimentalists

to tune the operational parameters such that the dissolution is not too rapid. The authors
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are willing to share the MATLAB scripts upon request with researchers interested in using

the platform for solubility and di�usivity measurements.

IV. EXPERIMENTAL DETAILS

This section summarizes the experimental conditions and the �tting parameters obtained

from the experimental data sets. The experimental protocol is outlined in section 3.1. Fig. 3

shows the variation of normalized bubble length with dimensionless distance for (a) ethanol

and (b) silicone oil. The normalized bubble length is de�ned as (βB − βB,s) / (βB,in − βB,s),

where βB,in is the dimensionless bubble length right after pinch-o� and βB,s is the steady

state dimensionless bubble length (i.e., once the bubble stops dissolving).
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Figure 3. (a) shows the normalized bubble length as a function of dimensionless distance (dimen-

sionless with respect to R) for CO2 dissolution in ethanol under di�erent conditions : Pg,in = 3 psig

and Pl,in = 4 psig ( ) ; Pg,in = 1 psig and Pl,in = 2 psig ( );P g,in = 2 psig and Pl,in = 3.5 psig

( ) ; Pg,in = 1.7 psig and Pl,in = 3.2 psig ( ) . (b) shows the normalized bubble length as a function

of dimensionless distance for CO2 dissolution in silicone oil under di�erent conditions: Pg,in = 5.23

psig and Pl,in = 3.58 psig ( ) ; Pg,in = 3.72 psig and Pl,in = 5.35 psig ( ) ; Pg,in = 3.15 psig and

Pl,in = 4.34 psig ( ) ; Pg,in = 3.19 psig and Pl,in = 4.38 psig ( ) . The solid lines in (a) and (b)

correspond to their respective �ts using the proposed model. Pg,in and Pl,in are inlet gauge pressure

values of the gas and the liquid respectively. The maximum value of the sum of residuals for the

�ts was 0.071. See Table I for more details.
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The numerical method for �tting is outlined in ESI III. Across the experimental data

sets, the variability in the �tted di�usion coe�cients and the �tted Henry's constant do not

exceed 4.8% and 3.38%, respectively. The �tting paramaters across each experimental data

set are accurate up to 0.7%.

The bubble dissolution process is highly dynamic in nature; the literature reports that

up to 10% mass transfer can occur during the bubble formation stage7. To avoid �tting for

a �ctitious initial bubble length, we have �t for the initial concentration distribution (see

Eq.2.17) at the point of bubble pinch-o�, and regarded that bubble length as the initial

bubble length. The purpose of including the inset in Fig. 3 (b) is to highlight the two

regimes of bubble dissolution in Taylor �ow. This has never been experimentally reported

in the literature, although it has been recently acknowledged8 via volume-of-�uid based

simulations. The �rst regime is convection-controlled dissolution and is characterized by the

initial sharp decrease in the bubble length. This is when the initial period where BLS �rst

receives gas and homogenizes it along contours of constant ψ. The second regime is di�usion-

controlled dissolution and is depicted by the slower decrease in the bubble length during later

time. Observation of the two separate regimes was made possible due to choice of a viscous

liquid (such as silicone oil), hence lower Pe. Although this regimes exist in ethanol as well,

the time scale over which the dissolution is convection-controlled is small as compared to

the bubble formation time (higher Pe), and cannot be recorded in our experiments. Recall

that our proposed model assumes that dissolved gas concentration is homogeneous along a

particular streamsurface. Hence, to deal with this shortcoming, we �t for the experimental

data that lies only in the second (di�usion-controlled) regime. The �tting parameters and

dimensionless parameters for each of these curves are summarized in table I.

In table I, Pein and Cain are the initial Pe and Ca respectively (i.e., right after bubble

pinch-o�). Pes and Cas are the steady state Pe and Ca respectively (i.e., once the bubble

stops dissolving). These are di�erent due to decrease in the bubble velocity upon dissolution,

which can be as high as 32%. O(χ) states the order of χ. Unlike the popular assumption

in the literature, for most experiments, the liquid �lm's contribution to mass transfer is as

important as the bubble caps. Even in the one case when O(χ) ∼ 0.1, the liquid �lm's

contribution to mass transfer cannot be ignored at short time scales. This is due to high

concentration gradients in a solute-devoid BLS during the initial dissolution stage.
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Table I. Experimental parameters

 

Legend 

(in Fig. 3)

Pg,in                 

(psig)

Pl,in 

(psig)
Pe in Cain Pe s Cas Regime

Dx10
9
 (m

2
/s) C out

3.00 4.00 7450 0.0150 25 6940 0.0140 22 4 4 1 3.89 1.00

1.00 2.00 526 0.0011 12 356 0.0007 5 10 1 0.1 3.63 0.73

2.00 3.50 2760 0.0049 20 2700 0.0048 15 6 1 1 3.55 1.00

1.70 3.20 2040 0.0041 17 1350 0.0027 8 9 1 1 3.92 0.45

Dx10
9
 (m

2
/s) C out t 0

* KH (atm)

3.58 5.23 195 0.0187 12 146 0.0140 1 32 1 1 3.08 0.86 2.24 294

3.72 5.35 509 0.0433 16 482 0.0410 12 16 1 1 2.90 0.87 0.16 294

3.15 4.34 369 0.0323 19 343 0.0300 13 12 1 1 2.84 0.42 0.94 310

3.19 4.38 211 0.0181 6 198 0.0170 4 13 1 1 2.84 0.85 2.04 284

24.5

Silicone Oil

Fitting parameters

Ethanol t 0
*

0.02

0.02

0.02

 (!)"#,$% "#,& "'

V. REGIMES OF MASS TRANSFER IN DISSOLVING TAYLOR BUBBLES

This section outlines four regimes of operation encountered in dissolving Taylor bubbles.

The regime map has been established based on a scaling analysis that depends on four

dimensionless parameters, the Péclet number, Pe = UBR/D, the liquid �lm thickness, δ, the

dimensionless liquid length, βL = LL/R and the dimensionless bubble length, βB = LB/R.

Here, UB is the bubble velocity, R is the radius of the tube, D is the gas di�usivity in liquid,

µ is the liquid viscosity, γ is the interfacial tension, LL is the liquid segment length and

LB is the gas plug length. Depending on the operating conditions, either the bubble caps

or the liquid �lm (of thickness δ) can play a dominating role in delivering gas to the bulk

liquid segment. δ is a function of the Capillary number, Ca = UBµ/γ (see Eq.2.5). As

described in section 4, depending on the liquid �lm thickness and concentration boundary

layers originating from the bubble and the �lm regions, there exist four possibilities during

the dissolution process.

First, consider the case when the liquid �lm surrounding the bubble is saturated with

gas. For this assumption to be justi�ed, the di�usion time scale over δ should be less than

the convective time scale of the liquid �lm to traverse the bubble length,

δ2

D
<<

LB
UB

. (V.1)

This simply means that the thickness of the concentration boundary layer surrounding BF

(δB ∼
√

(LBD/UB)) exceeds the �lm thickness, i.e.,

δ << δB. (V.2)

Page 11



Electronic Supplementary Material (ESI) for Soft Matter.
This journal is c©The Royal Society of Chemistry 2018

From the Eq. V.1, the condition for saturation of the liquid �lm (BF) surrounding the

bubble (see R-1 and R-2 in Fig.5),

Peδ2 << βB or
Peδ2

βB
<< 1. (V.3)

The amount of solute transferred from this saturated liquid �lm once it contacts the liquid

segment is

NF−L = kL|F−L(Csat − CB)2πRBLL. (V.4)

Here, CB is the concentration of solute in the bulk liquid segment and Csat is the saturation

concentration. The LF-to-BLS volumetric mass transfer coe�cient, kL|F−L, can be described

as

kL|F−L ∼
D
δL
, where (V.5)

δL ∼
√
DRB

UB
(V.6)

Here, δL is the concentration boundary layer thickness developed in the LF region. The

above scaling is valid for the limit (see R-2 in Fig.5), δL << δ or Peδ2

βL
>> 1. In similar vein,

the amount of solute transferred from the bubble caps to the liquid segment is:

NBC−L = kL|BC−L(Csat − CB)2πRB
2. (V.7)

The bubble caps-to-liquid volumetric mass transfer coe�cient, kL|BC−L, can be described as

kL|BC−L ∼
D
δBC

. (V.8)

Here, δBC is the concentration boundary layer thickness developed around the bubble caps

de�ned as

δBC ∼
√
DRB

UB
. (V.9)

The ratio of the amount of gas received from liquid �lm to that from the caps is

χ =
NF−L

NBC−L
. (V.10)

From Eqs. V.4, V.5, V.6,V.7, V.8 and V.9,

χ =

√
LL
R

=
√
βL. (V.11)
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Second, in the limit (see R-1 in Fig.5), δ << δL, or
Peδ2

βL
<< 1, χ can be deduced to be,

χ = δ
√
Pe. (V.12)

Third, in the limit when the liquid �lm is only partially saturated (R-3 and R-4 in Fig.5), or

Peδ2

βB
>> 1, (V.13)

the driving force for mass transfer from the liquid �lm to the liquid segment is reduced.

Assuming that the liquid segment is initially devoid of the gas, the ratio χ for the limit

δL << δ (R-4 in Fig.5), is

χ =
1

δ

√
βLβB
Pe

. (V.14)

Fourth, in the limit δ << δL (R-3 in Fig.5),

χ =
√
βB. (V.15)

Therefore, we can predict χ for all four possible cases (see Fig.5).

VI. THEORETICAL VALIDATION OF THE PROPOSED MODEL

Muradoglu et. al9 used a �nite volume/ front-tracking method (two-dimensional geom-

etry) to investigate axial dispersion of a solute injected in the leading liquid segment in a

train of non-dissolving bubbles. The authors studied the e�ect of varying capillary number

and Péclet number on axial dispersion. To validate our proposed model, we have introduced

a passive solute in the leading liquid segment (n=0 in Fig.4 (a)) in a train of six non-

dissolving bubbles. Fig.4 (a) compares the numerical predictions from this work with that

from Muradoglu et. al9 in the convection-controlled limit (Pe = 100 and Ca=0.01). There

is a reasonably good agreement in the average tracer concentration pro�les in the liquid

segments. A slight disagreement is observed when the subsequent liquid segments initially

receive the solute (see n = 2, 3 and 4 in Fig.4 (a)). This is because, for low Pe, it takes the

solute a �nite amount of time to circulate along a streamline. However, our proposed model

assumes homogenous concentration along every streamline at a given time. This is a fair

assumption for the intended application of this model, since such experiments entail Pe>>1.

Fig.4 (b) compares the average tracer concentration pro�les at various dimensionless times,
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t̂, (dimensionless with respect to the convective time scale) with the results from Muradoglu

et. al9 and the theoretical expression proposed by Pederson and Horvath10.

(b) (a) 

              

 

 

 

 

 

Segment number, n 

 !"#

!$,%

 

 !  

Figure 4. (a) shows the average solute concentration pro�les in the bulk liquid segments in a train of

six non-dissolving bubbles for βL = 0.75 at Pe= 100 and Ca= 0.01. The hollow circles with the solid

line correspond to this work and and dash-dotted line with `x' marker correspond to Muradoglu et.

al9. (b) compares the same results to theoretical predictions of Pederson and Horvath10 (solid black

line) given by the Poisson distribution. Here the the hollow circles are results from this work and

hollow triangles are predictions of Muradoglu et. al9.

We were unable to compare the results in the di�usion-controlled limit (Pe=104) because

Muradoglu et. al9 provides the results only up to t̂ ∼ 35. Such time-scales are not physically

captured in the simulations, and are much shorter than the experimental time scales over

which bubble dissolution is observed, since the latter are controlled by di�usion.

REFERENCES

1A. Acrivos, Journal of Fluid Mechanics, 1971, 46, 233�240.

2P. B. Rhines and W. R. Young, J. Fluid Mech., 1983, 133, 133�145.

3W. Young, A. Pumir and Y. Pomeau, POFA, 1989, 1, 462�469.

4J. L. Duda and J. S. Vrentas, Journal of Fluid Mechanics, 1971, 45, 247.

5G. I. Taylor, Journal of Fluid Mechanics, 1960, 9, 218.

6H. Winter, C. Macosko and K. Bennett, Rheologica Acta, 1979, 18, 323�334.

Page 14



Electronic Supplementary Material (ESI) for Soft Matter.
This journal is c©The Royal Society of Chemistry 2018

7C. Yao, Z. Dong, Y. Zhao and G. Chen, Chemical Engineering Science, 2014, 112, 15�24.

8L. Yang, M. J. Nieves-Remacha and K. F. Jensen, Chemical Engineering Science, 2017,

169, 106�116.

9M. Muradoglu, A. Günther and H. A. Stone, Physics of Fluids, 2007, 19, 1�11.

10H. Pedersen and C. Horvath, Industrial and Engineering Chemistry Fundamentals, 1981,

20, 181�186.

Page 15


	Concentration gradient in the bulk liquid segment
	Initial concentration distribution
	Numerical method
	Experimental details
	Regimes of mass transfer in dissolving Taylor bubbles
	Theoretical validation of the proposed model
	Bibliography
	References


