Supplementary Information

On the universality of the Flow Curve for Soft-Particle Glasses

Tianfei Liu,^a Fardin Khabaz,^a Michel Cloitre^b and Roger T. Bonnecaze^a

^a McKetta Department of Chemical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 USA

^b Soft Matter and Chemistry, CNRS, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France

1. Pair distribution function for suspension at rest for different force laws.

The pair distribution function for suspensions with different pairwise elastic force laws are similar at rest, as noted in Fig. S1.

Figure S1 Pairwise particle distribution at rest for volume fraction = 0.8

2. Fitting parameters for curves in Figs. 2-6. Tables S1-S6 list the fitting parameters used for the curves in Figs. 2-6 of the paper. Standard deviations are given inside parentheses following each data point. All the data shown in Table S1 and S5 are based on the following dimensionless equations:

$$\sigma/E^* = \sigma_y/E^* + k_\sigma \left(\beta \eta_s/E^* \right)^m, \tag{S1}$$

$$N_1 / E^* = N_{1y} / E^* + k_{N1} \left(\frac{\kappa_{N}}{2} / E^* \right)^{m_1} , \qquad (S2)$$

$$-N_2/E^* = -N_{2y}/E^* + k_{N2} \left(\beta \eta_s / E^* \right)^{m_2} .$$
(S3)

Volume Fraction	σ_y	k_{σ}	m
0.70	1.36×10 ⁻⁴ (1.59×10 ⁻⁵)	2.93 (2.52)	0.606 (0.065)
0.80	6.29×10 ⁻⁴ (4.59×10 ⁻⁵)	1.86 (0.79)	0.500 (0.032)
0.90	2.69×10 ⁻³ (9.61×10 ⁻⁵)	3.51 (0.71)	0.488 (0.015)
Volume Fraction	N_{1y}	k_{N1}	m_1
0.70	1.15×10 ⁻⁵ (2.00×10 ⁻⁶)	0.838 (0.354)	0.693 (0.036)
0.80	6.76×10 ⁻⁵ (1.29×10 ⁻⁵)	0.301 (0.186)	0.535 (0.053)
0.90	2.49×10 ⁻⁴ (2.14×10 ⁻⁵)	0.666 (0.117)	0.538 (0.017)
Volume Fraction	N_{2y}	k_{N2}	m_2
0.70	2.49×10 ⁻⁵ (1.18×10 ⁻⁶)	1.98 (0.33)	0.669 (0.013)
0.80	1.11×10 ⁻⁴ (6.59×10 ⁻⁶)	2.02 (0.24)	0.615 (0.011)
0.90	3.48×10 ⁻⁴ (3.06×10 ⁻⁵)	2.77 (0.39)	0.587 (0.013)

Table S1 Fitting parameters for curves in Fig. 2.

(The fitting parameters are similar for simulations with and without near-field draft forces.)

Table S2 Parameters for static	properties in Figs. 3 and 4.
--------------------------------	------------------------------

	Doromotora		Volume fraction				
n	Parameters	0.70	0.75	0.80	0.85	0.90	
	З	0.079	0.140	0.196	0.251	0.300	
15	Ζ	8.04	8.86	9.51	10.04	10.51	
1.5	G	9.22×10 ⁻³	1.85×10 ⁻²	2.79×10 ⁻²	3.71×10 ⁻²	4.72×10 ⁻²	
		(0.00149)	(0.00258)	(0.00224)	(0.00403)	(0.00356)	
	3	0.091	0.159	0.219	0.276	0.329	
3	Ζ	7.85	8.57	9.13	9.62	10.04	
5	G	3.63×10-4	1.82×10-3	4.95×10-3	1.00×10-2	1.56×10 ⁻²	
		(6.09×10 ⁻⁵)	(2.87×10 ⁻⁴)	(4.41×10 ⁻⁴)	(1.13×10^{-3})	(2.23×10^{-3})	
	3	0.099	0.169	0.232	0.292	0.346	
5	Ζ	7.73	8.41	8.94	9.38	9.75	
5	G	4.21×10-6	7.48×10-5	4.28×10-4	1.26×10-3	3.25×10-3	
		(8.98×10 ⁻⁷)	(1.77×10 ⁻⁵)	(8.83×10 ⁻⁵)	(1.74×10 ⁻⁴)	(4.17×10 ⁻⁴)	

 Table S3 Fitting parameters for low frequency modulus in Fig. 3.

п	G_0	ϕ_c	γ (fixed to <i>n</i> -0.5)
1.5	0.188 (0.001)	0.651 (0.001)	1.0
3	0.508 (0.021)	0.645 (0.001)	2.5
5	1.460 (0.090)	0.641 (0.002)	4.5

Note:
$$G = G_0 \left(\phi - \phi_c \right)^{\gamma}$$

Table S4 Fitting parameters in Fig. 4

	Fig. 4a			Fig. 4b	
п	Z_c	Z_0	ζ	${\cal E}_0$	ϕ_c
1.5	6.0 (0.1)	8.96 (0.03)	0.49 (0.02)	1.24 (0.03)	0.63 (0.01)
3	6.3 (0.1)	7.98 (0.04)	0.54 (0.02)	1.19 (0.03)	0.62 (0.01)
5	6.0 (0.1)	7.32 (0.04)	0.49 (0.02)	1.10 (0.02)	0.62 (0.01)

Note: $Z - Z_c = Z_0 \left(\phi - \phi_c \right)^{\zeta}$ with ϕ_c fixed to 0.65; $\varepsilon = \varepsilon_0 \left(\phi - \phi_c \right)$ with ϕ_c not fixed.

		<u> </u>		
п	Volume Fraction	σ_{y}	k_{σ}	т
	0.70	2.01×10 ⁻⁴ (1.6×10 ⁻⁶)	0.517 (0.042)	0.438 (0.005)
	0.75	5.69×10 ⁻⁴ (6.0×10 ⁻⁶)	0.499 (0.055)	0.413 (0.008)
1.5	0.80	1.07×10 ⁻³ (7.8×10 ⁻⁶)	0.637 (0.097)	0.415 (0.011)
	0.85	1.66×10 ⁻³ (3.5×10 ⁻⁵)	0.571 (0.102)	0.398 (0.014)
	0.90	1.83×10 ⁻³ (4.5×10 ⁻⁵)	0.344 (0.086)	0.341 (0.018)
	0.70	6.71×10 ⁻⁶ (3.7×10 ⁻⁷)	0.475 (0.073)	0.517 (0.009)
	0.75	4.51×10 ⁻⁵ (7.8×10 ⁻⁷)	0.349 (0.031)	0.461 (0.006)
3	0.80	1.39×10 ⁻⁴ (7.0×10 ⁻⁷)	0.404 (0.017)	0.441 (0.003)
	0.85	3.00×10 ⁻⁴ (1.7×10 ⁻⁶)	0.436 (0.016)	0.424 (0.003)
	0.90	5.56×10 ⁻⁴ (7.5×10 ⁻⁶)	0.504 (0.046)	0.417 (0.006)
	0.70	1.00×10 ⁻⁷ (1.5×10 ⁻⁸)	1.015 (0.15)	0.637 (0.007)
	0.75	1.84×10 ⁻⁶ (2.0×10 ⁻⁷)	0.469 (0.087)	0.551 (0.011)
5	0.80	1.06×10 ⁻⁵ (2.2×10 ⁻⁷)	0.350 (0.054)	0.500 (0.009)
	0.85	3.65×10 ⁻⁵ (5.3×10 ⁻⁷)	0.394 (0.051)	0.476 (0.008)
	0.90	9.73×10 ⁻⁵ (1.1×10 ⁻⁶)	0.531 (0.044)	0.470 (0.005)

Table S5.1 Fitting parameters for shear stress in Fig. 5.

Table S5.2 Fitting parameters for first normal stress difference N_1 in Fig. 5.

п	Volume Fraction	N_{1y}	$k_{\scriptscriptstyle N1}$	m_1
	0.70	1.91×10 ⁻⁵ (2.0×10 ⁻⁶)	0.650 (0.335)	0.629 (0.041)
	0.75	5.70×10 ⁻⁵ (2.0×10 ⁻⁶)	0.424 (0.061)	0.554 (0.012)
1.5	0.80	1.07×10 ⁻⁴ (3.5×10 ⁻⁶)	0.456 (0.059)	0.529 (0.011)
	0.85	1.68×10 ⁻⁴ (4.3×10 ⁻⁶)	0.487 (0.061)	0.511 (0.010)
	0.90	2.10×10 ⁻⁴ (1.4×10 ⁻⁵)	0.359 (0.102)	0.464 (0.024)
	0.70	5.95×10 ⁻⁷ (9.9×10 ⁻⁸)	0.232 (0.101)	0.645 (0.029)
	0.75	4.42×10 ⁻⁶ (3.2×10 ⁻⁷)	0.260 (0.091)	0.607 (0.025)
3	0.80	1.39×10 ⁻⁵ (1.7×10 ⁻⁶)	0.402 (0.132)	0.596 (0.026)
	0.85	3.26×10 ⁻⁵ (1.6×10 ⁻⁶)	0.419 (0.065)	0.572 (0.013)
	0.90	5.70×10 ⁻⁵ (1.9×10 ⁻⁶)	0.342 (0.048)	0.534 (0.011)
	0.70	1.45×10 ⁻⁸ (2.1×10 ⁻⁹)	0.147 (0.072)	0.707 (0.027)
	0.75	1.93×10 ⁻⁷ (5.2×10 ⁻⁸)	0.304 (0.245)	0.694 (0.051)
5	0.80	1.08×10 ⁻⁶ (2.5×10 ⁻⁷)	0.113 (0.072)	0.589 (0.042)
	0.85	3.60×10 ⁻⁶ (3.1×10 ⁻⁷)	0.090 (0.029)	0.537 (0.022)
	0.90	1.06×10^{-5} (1.2×10 ⁻⁶)	0.408 (0.125)	0.611 (0.024)

п	Volume Fraction	$-N_{2y}$	k_{N2}	m_2
	0.70	2.88×10 ⁻⁵ (1.1×10 ⁻⁶)	0.487 (0.042)	0.533 (0.007)
	0.75	7.40×10 ⁻⁵ (9.1×10 ⁻⁷)	0.421 (0.014)	0.501 (0.003)
1.5	0.80	1.28×10 ⁻⁴ (2.0×10 ⁻⁶)	0.466 (0.020)	0.496 (0.004)
	0.85	1.79×10 ⁻⁴ (4.9×10 ⁻⁶)	0.481 (0.051)	0.487 (0.009)
	0.90	2.19×10 ⁻⁴ (8.6×10 ⁻⁶)	0.422 (0.054)	0.469 (0.011)
	0.70	9.35×10 ⁻⁷ (1.8×10 ⁻⁷)	0.661 (0.121)	0.621 (0.012)
	0.75	6.68×10 ⁻⁶ (5.6×10 ⁻⁷)	0.577 (0.118)	0.584 (0.014)
3	0.80	1.90×10 ⁻⁵ (1.1×10 ⁻⁶)	0.508 (0.038)	0.551 (0.006)
	0.85	3.96×10 ⁻⁵ (1.5×10 ⁻⁶)	0.557 (0.048)	0.539 (0.007)
	0.90	6.70×10 ⁻⁵ (1.2×10 ⁻⁶)	0.527 (0.022)	0.518 (0.004)
	0.70	1.60×10 ⁻⁸ (3.0×10 ⁻⁹)	0.990 (0.093)	0.710 (0.005)
	0.75	3.55×10 ⁻⁷ (5.6×10 ⁻⁸)	0.821 (0.125)	0.664 (0.010)
5	0.80	1.77×10 ⁻⁶ (2.8×10 ⁻⁷)	0.635 (0.139)	0.620 (0.015)
	0.85	5.08×10 ⁻⁶ (5.6×10 ⁻⁷)	0.511 (0.103)	0.580 (0.014)
	0.90	1.33×10 ⁻⁵ (6.4×10 ⁻⁷)	0.620 (0.049)	0.572 (0.006)

Table S5.3 Fitting parameters for second normal stress difference N_2 in Fig. 5.

Table S6. Fitting parameters in Fig. 6.

	01	<u> </u>	
п		k'_{σ}	° m
1.5		145.7 (37.2)	0.407 (0.025)
3		224.2 (20.4)	0.428 (0.009)
5		677.0 (73.5)	0.503 (0.012)
n	<i>№</i> _{Ly}	k_{N_1}	тр
1.5	0.104 (0.007)	72.5 (15.2)	0.537 (0.025)
3	0.104 (0.005)	112.4 (12.0)	0.588 (0.014)
5	0.110 (0.007)	132.2 (15.5)	0.616 (0.016)
n	$-N_{2y}$	k / N ₂	เพื่อ
1.5	0.133 (0.023)	112.9 (49.8)	0.532 (0.053)
3	0.136 (0.027)	181.0 (45.6)	0.550 (0.033)
5	0.144 (0.026)	420.2 (75.2)	0.611 (0.023)

Note: $\sigma / \sigma_y = 1 + k_{\sigma}^{\prime 0} (\beta \eta_s / G_0)^{*}$

$$N_{1} / \sigma_{y} = N_{1y} + k_{N1} (\beta g_{s} / G_{0})^{m_{2}}; -N_{2} / \sigma_{y} = -N_{2y} + k_{N2} (\beta g_{s} / G_{0})^{m_{2}}$$

Table S7. Fitting parameters in Fig 7.

	<u> </u>	6
	\overline{k}_{σ}	m
	42.6 (7.9)	0.405 (0.025)
\overline{N}_{1y}	\overline{k}_{N1}	\overline{m}_1
0.104 (0.005)	14.7 (1.4)	0.540 (0.018)
$-\overline{N}_{2y}$	\overline{k}_{N2}	\overline{m}_2
0.130 (0.026)	20.1 (6.3)	0.517 (0.058)
	$1 \overline{1} (9 / 2)$	r^*

(Note: $\sigma / \sigma_y = 1 + \overline{k}_{\sigma} \left(\beta \eta_s / \gamma_y^2 E^* \right)^m$

$$N_{1} / \sigma_{y} = \bar{N}_{1y} + \bar{k}_{N1} \left(\beta \eta_{s} / \gamma_{y}^{2} E^{*} \right)^{\bar{m}_{1}}; -N_{2} / \sigma_{y} = -\bar{N}_{2y} + \bar{k}_{N2} \left(\beta \eta_{s} / \gamma_{y}^{2} E^{*} \right)^{\bar{m}_{2}})$$

3. Scaling of yield stress with distance to jamming.

Figure S2 Scaling of yield stress with volume fraction. ϕ_c is assumed to be 0.64. The fitted curves are: (a) $\sigma_y / E^* = 0.0152 (\phi - \phi_c)^{1.5}$; (b) $\sigma_y / E^* = 0.0331 (\phi - \phi_c)^3$; (c) $\sigma_y / E^* = 0.0980 (\phi - \phi_c)^5$.