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Derivation of the Microscopic Force Projection Factor 

 The “projection factor” 3 21 2S  in Eq.(6) is derived as follows. If the imposed 

deformation tensor is 

E  then the required PP step orientational distribution function is 
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where 
0
= d ¢


u 4pò  is the average over an isotropic distribution of orientations and 

¢

u  and 


u

i
 are unit vectors before and after deformation, respectively. Eq. (S1) implies 

the probability that an arbitrarily chosen point of the deformed PP step is in the direction 

of 

u

i
=
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u  [1]. For a shear deformation, 


E  is [1] 
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The inset of Figure A1 defines the unit vector of the PP step 

f q1

,j
1( ) , tube diameter 

(perpendicular to PP step axis) 

f^ q

2
,j

2( ) , and shear direction 

f 1,0,0( )  in our 

calculation. The PP step unit vector can be written as  

                                                            

f =


E ×


¢u

E ×

¢u

                                                (S3) 

The angle between the vector perpendicular to the PP step axis and lab shear direction is 

defined as q^  (inset of Fig.A1). Hence, ( )cos q^  quantifies the component of external 

force orthogonal to the PP axis, which follows from Eqs. (S3) - (S6) as: 
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We assume the PP step orientation is induced by an affine step shear deformation of 

amplitude g . The associated degree of orientational order is then given by Eq. (17).  

 Figure S1 presents the calculated ( )cos q^  as a function of the orientational 

order parameter S . As expected, ( )cos q^  monotonically decreases with S , implying 

the effect of the direct stress-dependent force on dynamic free energy dynF  becomes 

weaker due to PP step orientation. For simplicity, an accurate analytic expression 

3 21 2S  (green dashed line in Figure S1) is used in the numerical calculations 

reported in the text. 
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Figure S1 Red circles are ( )cos q^  values as a function of the PP step orientational 

order parameter S . The green dashed curve is the “projection factor” used in the main 

text. Inset: Schematic diagram for the unit vector of the PP step 

f q1

,j
1( ), tube diameter 

direction (perpendicular to the axis of a PP step) 

f^ q

2
,j

2( ) , and shear direction 


f 1,0,0( ) . The angles ( )1 1,q j  and ( )2 2,q j  are spherical coordinates for unit vectors 


f  

and 

f^ , respectively.   

Details of Rheological Theory of Continuous Startup Shear Deformation 

 Model Constitutive Equation 

We adopt the simplest version of the Mead-Larson-Doi (MLD) model [2] as the 

constitutive equation framework. The chain PP contour length stretch ratio 

  
l(t) º l

PP
(t) / l

PP,0
 describes in an average sense any PP step on any chain. The basic 

rheological equations are [2]: 
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where 
 
S

xy
 is the xy-component the orientation tensor, eG  is the plateau shear modulus, 

  
Q

xy
z( ) » z 5+ z2( )  is the affine deformation orientational factor [1], E  is the 

accumulated deformation, and the tube survival function is the accumulated orientational 

relaxation associated with an effective orientational relaxation time eff : 
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which includes (perturbed) reptation, CCR and perhaps activated transverse entropic 

barrier hopping (see section III.E). Recent simulations [3] found the factorization of total 

stress into orientational and stretch contributions per Eq.(S7) is quite accurate.  

 Delayed Onset of Chain Retraction 

    Based on the dynamic tension blob concept [4,5], we recently formulated [6] a 

theoretical description of the so-called interchain “grip force” gripf  [7] envisioned as the 

microscopic origin of affine stretching of the PP contour length in entangled liquids. We 

found that gripf  has distinctive strain-dependences under continuous shear deformation [6]. 

The corresponding intrachain retraction force retractf  can be obtained based on a 

microrheological perspective [6], and linearly increases with strain. 

 The key physical idea (per Wang et al. [7]) is that as long as gripf  is stronger than 

retractf , polymers stretch in a purely elastic affine manner. But once the retraction force 

exceeds the grip force, it becomes possible for chain retraction to commence, which 

signals the breakdown of affine deformation of the PP contour length. The force 

imbalance criterion follows by equating the grip and retraction forces to obtain the mean 

“loss of grip” strain, g
grip

 . For WiR <1 we found [6] 1.8grip RWig » , which is well 

below the DE model [1] value of ~2.25 for the stress overshoot strain. For WiR>1 we 

derived [6] 1/32.3grip RWig » . The 1/3 exponent arises from a competition between the 

strain dependences of the grip and retraction forces, and agrees well with the 1/3 power 
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law for the overshoot strain ( max
1/32 RWig » ) found in experiments [7] and simulation [8]. 

But a convincing analysis requires a full rheological calculation [6]. 

 Consequences of Tube Diameter Fluctuations 

The anharmonic tube confinement potential of Section II implies the existence of 

a broad distribution of tube diameters, in the spirit of simulation-based PP analyses [9,10]. 

Such tube diameter fluctuations modify the entanglement strand retraction force strength 

via the conversion step from elastic stress to microscopic force [6,11], and imply a 

distribution of force imbalance conditions and loss of grip strains, ( )gripP g . The fraction 

of strands that have achieved force imbalance at a given strain is [6,11]  

 
  
Q

grip
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grip( )dg grip0

g
ò     (S10)

 

This function broadens with shear rate mainly due to a shift of the most probable value of 

 
g

grip
. With increasing strain there is a continuous loss of grip and crossover from solid-

like to liquid-like response of the chain stretch degree of freedom. 

 Chain Stretch Dynamics 

The chain-level PP contour length degree of stretch, l, is described in a globally 

mean fashion corresponding to an average over entanglement strands on any specific 

chain and all chains in the system. Based on our physical picture, we postulated the 

following evolution equation for PP contour length stretch [6,11]:  

    
dl
dt

= S
xy

g l 
l 1


R,eff

Q
grip

g( )        (S11) 

The first term describes affine stretching in the standard manner [2,12]. The second term 

describing retraction has two qualitatively new elements. First, it continuously “turns on” 
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from zero with increasing elapsed time or accumulated strain thereby capturing the 

amount of loss of grip (as quantified by ( )grip gQ ). Second, as grip is lost the PP contour 

length increasingly behaves in an unentangled manner. Retraction is faster when WiR>1 

because Rouse modes of wavelength larger than   do not dissipate energy [5]. Here   is 

the scale below which a polymer remains conformationally equilibrated and beyond 

which it stretches [5]. The effective retraction time decreases as [5]     R,eff
( g ) µ

R ,0
 / R

ee
 

and quantitatively: 
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where the final equality is an accurate interpolation formula [5].  

 Effective Orientational Relaxation and Barrier Hopping Times 

 The analogous results of Fig.5 for a larger Z=25 are given below. All trends are 

the same as found for Z=6. 
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Figure S2 Log-log plot of the transverse barrier hopping time normalized by the effective 

orientational relaxation time as a function of strain for Z=25 and four low shear rates. 

Dots indicate the strains at the stress overshoot. 

 Orientational Order Parameter at the Stress Overshoot 

 The analogous results of Fig.6 for the nematic orientational PP step order 

parameter but at the stress overshoot are given below. All trends are qualitatively the 

same as found in the steady state.   
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Figure S3 PP step nematic orientational order parameter at the stress overshoot as a 

function of Rouse Weissenberg number for weakly entangled ( 6Z = ) to heavily 

entangled ( 100Z = ) melts. Cross and filled symbols are results with the hopping process 

(Eq. (15)) and without hopping process (Eq. (14)), respectively.  

 Dynamic Tube Diameter at the Stress Overshoot 

 The analogous results of Fig.7 for the dynamic tube diameter at the stress 

overshoot are given below. All qualitative trends are the same as found in steady state.  
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Figure S4 The normalized tube diameter at the stress overshoot as a function of Rouse 

Weissenberg number for weakly entangled ( 6Z = ) to heavily entangled ( 100Z = ) melts. 

Cross symbols are results with hopping (Eq. (15) and filled symbols ignore hopping (Eq. 

(14). 

 Flow Curve 

 As relevant background to discuss the steady state behavior of the transverse barrier, 

Figure S5 shows our results (including hopping for computing eff ) for the flow curve for 

four degrees of entanglement which span the weakly to heavily entangled range, Z=5, 15, 

25, 45. An example for Z=45 is also shown that does not include hopping, and one sees it 

does not matter. The flow curves are all monotonic with shear rate. For slow nonlinear 

deformations, the usual expansion of the width and flattening of the intermediate plateau-

like regime is predicted with increasing Z.   
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Figure S5 Dimensionless steady state flow stress versus Rouse Weissenberg number for 

Z=5, 15, 25 and 45. Cross symbols represent results where transverse barrier hopping in 

the calculation of the effective orientational relaxation time; one example of not including 

hopping is shown for Z=45 (solid diamonds). Curves are a guide to the eye. The onset of 

the nonlinear regime at Wi=1 is indicated by the arrows. 
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