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I. THE UPPER BOUND OF THE
CONTRACTION ANISOTROPY FOR A

UNIAXIALLY CONSTRAINED HYDROGEL
WITHOUT PRESTRAIN

To prove Eq. 13 in the main text, we firstly show that
the χ value of the uniaxially constrained hydrogel is al-
ways larger than that of the free hydrogel at the same φ
when φ > φc. Let χ and χ′ denote the Flory parameter
for the free hydrogel and the uniaxially constrained hy-
drogel respectively; χ and χ′ intersect at φc as shown in
Fig. 1b. According to Eq. 5 and 6 in the main text, χ
and χ′ differ by

χ− χ′ =
Nν

Vmφ2

(
1

λ‖
− φ1/3

)
(S1)

which suggests that χ < χ′ for arbitrary φ > φc and
vice versa. If the initial state of the contraction has no
prestrain, i.e., φ′i = φi = φc, φ

′
f and φf must be larger

than φc. Thus

χ′(φf ) > χ(φf ) = χ′(φ′f ). (S2)

Since χ′ is monotonic as a function of φ, we obtain φf >

φ′f which leads to (φ′f/φ
′
i)

1/2 < (φf/φi)
1/2 = α

−3/2
0 .

II. FLORY-HUGGINS PARAMETER OF
POLY(ETHLYENE OXIDE) (PEO) IN AQUEOUS

SOLUTIONS

We describe the PEO behavior in aqueous solutions
with the Dormidontova’s model [1] which is briefly in-
troduced as follows. The free energy of PEO/water so-
lutions is essentially formulated within the framework of
Flory-Huggins theory. Each PEO chain has N monomers
of volume vp, and each water molecule is represented as
a monomer of volume v, which is used as the reference
volume for the free energy. The translational entropy
contribution of the PEO solutions follows the same form
as the Flory-Huggins theory:

Ftrans

kT
=

v

Nvp
φ lnφ+ (1 − φ) ln(1 − φ) (S3)

The interaction energy between PEO monomers and wa-
ter without the hydrogen bondings involved is given by

Fint

kT
= χφ(1 − φ) (S4)

Here χ possesses the standard form A+B/T . According
to the Dormidontova’s model, the free energy due to the
hydrogen bondings is presented in the form:

FHB

kT
= 2φ

v

vp

[
p ln p+ (1 − p) ln(1 − p) − p

∆fp
kT

]
+ 2(1 − φ)

[
q ln q + (1 − q) ln(1 − q) − q

∆fw
kT

]
+ 2(1 − φ)

(
1 − q − p

φ

1 − φ

v

vp

)
ln

(
1 − q − p

φ

1 − φ

v

vp

)
− 2(1 − φ)

(
q + p

φ

1 − φ

v

vp

)
ln

2(1 − φ)

e

− 2(1 − φ)

[
q0 ln q0 − q0

∆fw
kT

+

2(1 − q0) ln(1 − q0) − q0 ln
2

e

]
(S5)

where p represent the average fraction of hydrogen bonds
between PEO and water, and q is the average fraction of
association in water; q0 is the value of q at φ = 0, i.e., the
average fraction of association in pure water. ∆fp is the
free energy of the formation of each PEO-water hydrogen
bond, and ∆fw is the free energy of the formation of each
water-water hydrogen bond. It is noteworthy that Eq. S5
is obtained by subtracting the free energy of pure PEO
(φ = 1) and water (φ = 0) from the mixed state. The
detailed derivation of Eq. S5 can be referred to Ref. [1, 2].
The total free energy per lattice site is therefore the sum
of Eq. S3, S4 and S5:

F = Ftrans + Fint + FHB (S6)
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p and q must satisfy ∂F/∂p = 0 and ∂F/∂q = 0 to mini-
mize the total free energy, which delivers

p

2(1 − p)
[
(1 − φ)(1 − q) − pφ v

vp

] = exp

(
∆fp
kT

)
(S7)

q

2(1 − q)
[
(1 − φ)(1 − q) − pφ v

vp

] = exp

(
∆fw
kT

)
(S8)

The φ-dependent χ of PEO in aqueous solutions can be
obtained by comparing Eq. S3-S5 with Eq. 3 in the main
text, and subsequently χ can be derived as:

χ = χ+
2

φ

(
p
v

vp
− q

)
+

2

φ2

[
q − q0 + ln

q

q0(1 − φ)

]
(S9)

Eq. S9 exhibits a non-trivial dependence of χ on φ which
is in good agreement with experiments [2]. Using Eq. S9
to replace χ in Eq. 5 and 6 of the main text, and incorpo-
rating Eq. S7-S8, we are able to solve the T ∼ φ relations
for PEO hydrogels as shown in Fig. S2. All the parame-
ters for our calculations are obtained from Ref. [1].

III. FINITE ELEMENT SIMULATIONS

The finite element simulations are performed using
ABAQUS/Standard. The hydrogel matrix is meshed
with C3D8R elements. In all the simulations the mesh
density is validated in mesh convergence studies.

A. Verification of the UHYPER

The UHYPER subroutine is verified in both a free
swelling hydrogel (Fig. S3a) and a swelling hydrogel un-
der uniaxial constraint (Fig. S3b). The simulations are
performed with Nν/Vm = 0.005, and λ‖ = 2.0. The
simulations results show perfect agreement with the an-
alytical results from Eq. 5, 6 and 7 in the main text.

B. Transverse contraction of the prestretched
fiber-reinforced hydrogel at L/l = 1

We have also performed simulations for a prestretched
fiber-reinforced hydrogel at L/l = 1 by varying the trans-
verse fiber-fiber distance. The simulations are performed
with d = 10 nm, Nν/Vm = 10−4, φc = 5.0−3, φi = 2.5−3

and α0 = 0.8; thus the hydrogel undergoes 100% longitu-
dinal prestrain before contraction. The simulation results
in Fig. S4 show similar decreasing behavior as Fig. 5 in
the main text.

C. Stress concentration at the fiber ends

The stress concentration is observed at the fiber ends
due to the strong reinforcement of the rigid fiber, as
shown in Fig. S5. When D/d = 2.5 (see Fig. S5a), mod-
erate stress concentration occurs at the fiber end; the
stress near the whole fiber is also substantially larger
than the rest of the hydrogel due to the reinforcement
of the fiber. Thus the longitudinal contraction is highly
restricted when D/d is relatively small. The stress con-
centration near the fiber end is even more remarkable
at D/d = 6.0 (see Fig. S5b). However, large portion of
the hydrogel with low stress also presents in Fig. S5b,
which counteracts the large strain energy introduced by
the local stress concentration near the fiber. Overall, the
longitudinal contraction is energetically favored at high
D/d.

D. The contraction anisotropy at different Nν/Vm

Figure S6 shows that the maximum contraction
anisotropy occurs at the same value of D/d when vary-
ing Nν/Vm. The overall elevation of A with decreasing
Nν/Vm agrees with the numerical calculation at ε‖ = 0
in Fig. 2 of the main text.
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FIG. S1. Schematic χ ∼ φ plot of a uniaxially constrained hydrogel (red curve) undergoing a stronger volumetric contraction
(φ′

f/φ
′
i > φf/φi) than a free-shrinking hydrogel (blue curve) with ε‖ > 0.
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FIG. S2. Contraction of PEO hydrogels upon increasing temperature. The contraction of a free-shrinking (blue curve) and a
uniaxially constrained (red curve) PEO hydrogel as the temperature increases from Ti to Tf .
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a b

FIG. S3. Verification of the implementation of the finite element user-defined subroutine. (a) χ ∼ φ plot of a free swelling
hydrogel. (b) The stress σ3 along the constrained direction for a uniaxially constrained hydrogel. At φ = φc, the stress vanished
as expected. The inset illustrate the corresponding χ ∼ φ curve of the uniaxially constrained hydrogel.
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FIG. S4. The transverse contraction ratio of the prestretched fiber-reinforced hydrogel as a function of the reduced transverse
fiber-fiber distance (D/d) at L/l = 1
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FIG. S5. The von Mises stress distribution at (a) D/d = 2.5 and (b) D/d = 6.0. Only one-eighth of unit cell is shown in the
figure due the symmetry of the model.
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FIG. S6. The contraction anisotropy at different Nν/Vm. L/l = 1.25.


